
A Fast Algorithm for a k-NN Classifier Based on Branch and
Bound Method and Computational Quantity Estimation

Shin’ichiro OMACHI† and Hirotomo ASO†

†† Graduate School of Engineering, Tohoku University, Sendai-shi, 980-8579
Japan

SUMMARY

Nearest neighbor rule or k-nearest neighbor rule is a technique of nonparametric
pattern recognition. Its algorithm is simple and error is smaller than twice the Bayes
error if there are enough training samples. However, it requires enormous compu-
tational quantities that is proportional to the number of samples and the number of
dimensions of feature vector. In this paper, a fast algorithm for k-nearest neighbor
rule based on branch and bound method is proposed. Moreover, a new training al-
gorithm for constructing a search tree that can reduce the computational quantity is
proposed. Experimental results show the effectiveness of the proposed algorithms.

Keywords: pattern recognition, nearest neighbor rule, k-nearest neighbor rule,
branch and bound method, character recognition

1 Introduction

The nearest neighbor rule [1] is one of the simple and precise classification methods. Its al-
gorithm is quite simple, and it is a nonparametric method that does not need knowledge about
distribution of patterns. If there are enough training patterns, classification error will be smaller
than twice the Bayes error. Because of its simplicity and precision, many researches are done,
e.g., improving the algorithm itself [2, 3] or combining it with other methods [4]. Nearest neigh-
bor rule can be expanded to k-nearest neighbor rule by using k neighbors of an unknown input
pattern. Finding k neighbors is used not only for classification but also for estimation of sam-
ple distribution and Bayes error [5, 6]. However, these methods require enormous computation
complexity that is proportional to the number of training samples and the number of dimensions
of feature vector.

Some methods for finding k neighbors have been proposed. Fukunaga et al. have proposed
a fast search method based on branch and bound method [7]. It realizes fast search by skipping
search of subtrees those are unnecessary to be searched. However, although the efficiency
of search strongly depends on the structure of search tree, the propriety of the construction
method and the structure of search tree, e.g., height of the tree, number of children of one node,
clustering algorithm, are not mentioned in [7]. Djouadi has proposed a method to decrease the
number of training samples that are needed for distance calculation by dividing space. However,
the effectiveness decreases as the number of dimensions of feature vector increases, and the
method is not effective if the number of dimensions is greater than seven [8].

1



There are some methods for fast recognition using the nearest neighbor rule or the k-nearest
neighbor rule on condition that they are only used for pattern recognition but not for estimation
of sample distribution. These methods are mainly classified into two types. In some methods
the number of samples for distance calculation is limited, and in the other methods the search
space is limited. The former reduces computation time and space complexity, but the latter
reduces only time complexity. To limit the number of samples for distance calculation, an
effective subset are calculated from training data set [9, 10, 11], or a new set is reconstructed
for classification [12]. The method proposed by Sethi [13] is the one that limits the search space.
By using distances from unknown input to three points in the search space, the search space is
limited. Consequently the number of samples for distance calculation becomes small, and the
computation time is decreased. However, there is no guarantee that the results using subsets or
using selected new sets are the same as the results using the original nearest neighbor rule or
k-nearest neighbor rule. As described above, the nearest neighbor rule has desirable property
such that the classification error is smaller than twice the Bayes error. It is meaningful to get
the same results as the results using original methods.

In this paper, a fast algorithm for recognition using the k-nearest neighbor rule (or the near-
est neighbor rule) is proposed. High dimensional vectors used for character recognition are the
targets. This algorithm is based on branch and bound method. The method of Fukunaga et al.
[7] focuses on finding k nearest neighbors in the strict sense. However, in pattern recognition
by the k-nearest neighbor rule, candidate category is decided by a majority vote. It means that it
is not necessary to find the exact k nearest neighbors. It is sufficient that the number of training
samples of a certain category among the k nearest neighbors is more than �k/2�. The proposed
method focuses on this point and realizes an efficient search, and the same results as the results
of the original method are obtained. Moreover, a new training method that constructs a search
tree by estimating the computational complexity is proposed. Experimental results using feature
vectors used for character recognition show the effectiveness of the proposed method.

2 The method of Fukunaga et al. [7]

In this section, the method that finds nearest neighbor fast proposed by Fukunaga et al. is briefly
described.

First, training data set is divided into l subsets, moreover each subset is divided into l subsets
again. By applying this procedure recursively, the search tree is constructed. An example of
search tree (l = 3) is illustrated in Fig. 1. Each leaf of the search tree corresponds to one training
sample. Consecutive numbers are assigned to the nodes except for the leaves. The root is node
0 and children of the root (nodes at level one) are node 1 through l. Node p has four parameters
Sp, Np, µp and rp. Sp is the set of samples associated with node p, Np is the number of samples
in Sp, µp is the mean value of samples of Sp, and rp is the distance from µ to the farthest sample
in Sp.

When an unknown input x is given, the nearest neighbor is found by searching this tree
by depth first search. Among the nodes at the same level, the node which has smaller distance
d(x, µp) is searched earlier. Using the following two rules, the number of nodes and samples
are restricted, and fast search is realized.

Rule 1 Denote the distance from the unknown input to the current nearest sample as B. All the

2



Node 0

Node 1 Node 2 Node 3

Node 12

: Node : Sample

LEVEL 1

LEVEL 2

LEVEL 0

LEVEL 3

Figure 1: Search tree of [7].

nodes associated with node p does not need to be searched, if

B < d(x, µp) − rp.

Rule 2 Denote the distance from the unknown input to the current nearest sample as B. xi ∈ Sp

is not the nearest neighbor of x, if

B < d(x, µp) − d(xi, µp)

Here, d(xi, µp) is calculated previously.

This method is easily expanded to the k-nearest neighbor rule by memorizing k nearest
samples and by denoting B as the distance from the unknown input to kth nearest sample.

In [7], k-means algorithm is used as the clustering algorithm. The number of l is three, and
the height of the search tree is four. That is, training data set is divided into 27 subsets. However,
propriety of the clustering algorithm, number of l and height of the tree is not mentioned.

3 Proposed method

In this paper, a fast method is proposed on condition that the k-nearest neighbor rule is only
used for pattern recognition. The proposed method is based on branch and bound method like
the method proposed by Fukunaga et al.

In the case that the k-nearest neighbor rule is adopted to pattern recognition, it is not the
most important thing that whether the exact k nearest neighbors are found or not. Denote the
classification answer of traditional k-nearest neighbor rule is category c. If more than �k/2�
samples among the selected k nearest neighbors are from category c, the proposed method can
give the same classification answer as the traditional one.

For a fast search, it is important to reduce the number of calculation times of distance be-
tween an unknown input and training samples. We propose a method to construct a search
tree that reduces the computational quantity by estimating the number of calculation times of
distance.

In this section, first the search tree used in the proposed method is described, and the search
algorithm is shown. Then the number of times of distance calculation is estimated and a training
algorithm that reduces this number of times is proposed.

3



Node 1 Node 2 Node

: Node : Sample of category 1
: Sample of category 2
: Sample of category

Node 0

LEVEL 1

LEVEL 2

LEVEL 0

LEVEL 3

M

M

Figure 2: Search tree.

3.1 Search tree

Let M be the number of categories, D be the number of dimensions of feature vector, and N be
the number of training samples of each category. In the search tree used in the proposed method,
each node at level one whose parent is root node corresponds to one category. Accordingly
the number of nodes at level one is M , and each leaf that is the descendant of the node p
(1 ≤ p ≤ M) corresponds to one training sample of category p. The subtree whose parent is
node p is determined by hierarchical clustering. An example is shown in Fig. 2. The number of
children of each node is not fixed.

In our method, the set of training samples are divided into subsets hierarchically to construct
a search tree. For this reason, hierarchical clustering method is needed. It is efficient for the
search if Rule 1 described in Section 2 is satisfied at much more times. The complete linkage
method is used here, because the maximum distance between samples in a cluster becomes
small by this method.

Let xi be a training sample, and Ci be a cluster. At the initial state,

Ci = {xi}, 1 ≤ i ≤ N. (1)

Then, i and j that minimize the following h(i, j) are combined recursively.

h(i, j) = max
xs∈Ci,xt∈Cj

d(xs, xt) (2)

Therefore a clustering tree is constructed. An example is shown in Fig. 3(a). In the figure, the
height of each node shows a distance determined by Eq. (2), and dmax is the maximum distance
between two samples in that cluster.

In the proposed method, a threshold of distance is determined and the search tree is con-
structed by clustering tree constructed by this threshold. The search tree of Fig. 3(b) can be
constructed from the clustering tree of Fig 3(a) if two thresholds θ1, θ2 are given.

3.2 Search algorithm and estimation of computational quantity

In the proposed method, k nearest neighbors of an unknown input are saved if any of them
is changed with other neighbor during the search. The category that most samples among the
final k nearest neighbors belong to is recognition result. The search algorithm consists of the
following four steps.

4



x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Distance

θ

θ1

2

maxd

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Node i

(a) Clustering tree. (b) Search tree.

Figure 3: Clustering tree and search tree for one category.

1. Selection of standard category

2. Search of the standard category

3. Search of the category except for the standard category

4. Second search of the standard category

Here, standard category is defined as the category whose center of gravity is nearest to the
unknown input. The standard category is considered to have the highest possibility that the
unknown input pattern belongs to. By choosing appropriate k neighbors (not necessarily the
exact k nearest ones) from the standard category, it is expected that the number of applying
Rule 1 and Rule 2 described in Section 2 increases during the search of categories except for
the standard category. When the search of categories except for the standard category finishes,
if there are not more than half samples of the standard category among the k nearest neighbors,
the standard category is searched again.

For fast search, computational quantity is estimated and the thresholds are decided according
to the estimated quantity1. Here, we assume that high dimensional vector is used here like the
one for character recognition. Therefore the value D is very large. Since the number of category
M and the number of samples per category N are not so large, D � log M and D � log N .

In the following, each process of search algorithm is described, and computational quantity
of each process is estimated. Let H be the height of search tree, and αL be the average value of
the number of children of each node of level L (1 ≤ L ≤ H − 1). Denote the unknown input
vector as x. The distance between x and the center of gravity µp of node p is simply called
distance between x and node p.

1. Selection of standard category

For each node p at level one, the category whose distance between x and its center of gravity is
the smallest is selected. That is, the category c is selected with the following expression.

c = argmin
1≤p≤M

d(x, µp) (3)

1Computational quantity estimation here is done only for threshold decision.

5



This category c is called standard category.
For selecting standard category, distance calculation of x between each node at L = 1 and

selection of the category whose distance is the smallest are necessary. The time for distance
calculation is MD and the time for sorting is M log M . Since D � log M , time for sorting
can be ignored and the computational quantity is MD. In the following, time for distance
calculation is only considered, while the time for sorting is also ignored. Distance calculation
necessary for selecting the standard category is M .

2. Search of the standard category

The nodes which are the descendants of node c are searched. The search is done depth-first,
and for the same level nodes, the node whose distance from x is smaller is searched earlier. In
other words, starting with a node at L = 1, in the case of L < H − 1, calculate the distances
between x and all of its children of the node and find the node whose distance is smallest. The
same procedure is done for the found node. In the case of L = H − 1, calculate the distances
between x and all of its children that correspond to samples and find k nodes whose distances
are small. If the number of children of selected node at L = H − 1 is smaller than k, the same
procedure is done for the node whose distance is the second smallest.

For this search, distance calculations of all the children of the nodes at level L (1 ≤ L <
H − 1) and all the children of the node at L = H − 1 are done. The number of distance
calculation n1 is,

n1 =
H−1∑

L=1

αL. (4)

Strictly speaking, if the number of children of the selected node at L = H − 1 is smaller than
k, another search is necessary. However, since another search is necessary in few cases when k
is small, the computational quantity for another search can be ignored.

3. Search of the category except for the standard category

Starting from node p (1 ≤ p ≤ M, p 	= c), the nodes which are the descendants of node p are
searched. The search is done depth-first, and for the nodes at the same level, the node whose
distance from x is smaller is searched earlier. In this case, the nodes for search is restricted by
applying Rule 1 and Rule 2. Concretely, for all the nodes of L = 1 except node c, the following
procedure is done.

In the case of L < H − 1, distances between the unknown input x and all of the children
of the node are calculated and sorted. Then for all the nodes which do not satisfy Rule 1, the
same procedure is done. The node whose distance is smaller is processed earlier. In the case
of L = H − 1, distance between the unknown input x and each of the child of the node which
does not satisfy Rule 2 is calculated. It is compared with currently selected k distances, and if
the calculated distance is smaller, it is changed with the largest distance among the current k
distances.

Here, denote the average number of nodes of level L which do not satisfy Rule 1 as βL.
βL ≤ αL is satisfied. The estimated number of distance calculation times n2 for one category
is,

n2 = α1 + β1(α2 + β2(· · · (αH−3 + βH−3(αH−2 + βH−2αH−1)) · · ·)). (5)

6



4. Second search of the standard category

When the process 3. finishes, the categories that the selected k training samples belong to are
checked. If more than �k/2� samples of the standard category c are included in these selected
k samples, then the standard category c is the classification result. If there are less than �k/2�
samples of the standard category c, the second search will begin at node c. Those nodes that are
node c’s children but have not been searched before are the targets of the second search. The
method of the second search is the same as the method used in 3. The category that most finally
selected training samples belong to is the category that the unknown pattern belongs to.

If the standard category needs to be searched twice, the number of distance calculation times
of the second search is the difference between the average number of one category described in
3. and the number described in 2. However, since the standard category is the category whose
center of gravity is closest to the unknown pattern x, the possibility that the standard category
is the classification result is extremely high. Therefore, for most cases, there is no necessity to
make the second search of the standard category. The calculation times spent on this part can
be ignored.

3.3 Training algorithm for constructing search tree

According to the result of Section 3.2, the estimated total calculation times denoted as n is

n = M + n1 + (M − 1)n2. (6)

Obviously, how to design the structure of search tree to make n small is a decisive factor. To
design the structure of search tree, a clustering tree of each category as shown in Fig. 3(a) is
constructed. As described above, the search tree is constructed by adding several thresholds to
the clustering tree. In the following section, how to choose the appropriate number of thresholds
and the appropriate values of thresholds are explained.

3.3.1 Construction of search tree with height three

By connecting leaves which are training samples to node p (1 ≤ p ≤ M), an initial search tree
with height two is constructed. By inserting another level of nodes under level one, the height
of the search tree changes to three (See Fig. 4). In this tree, the children of the nodes at level two
are training samples. In this case, according to Eqs. (4) ∼ (6), the estimated calculation times
of n(3) is as follows:

n(3) = M + n
(3)
1 + (M − 1)n

(3)
2 , (7)

where

n
(3)
1 = α

(3)
1 + α

(3)
2 , (8)

n
(3)
2 = α

(3)
1 + β

(3)
1 α

(3)
2 . (9)

By giving a threshold θ1 to the clustering tree constructed by the complete linkage method
described in Section 3.1, a search tree with height three can be constructed (see Fig. 4). The
threshold θ1 is chosen to make the value of n(3) to be minimum. As shown in Fig. 3(a), if the

7



Node i

Node 0

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 0

Figure 4: Tree with height three.

Node i

Node 0

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 0

LEVEL 4

Figure 5: Tree with height four.

largest value among each category’s dmax is d̂max, θ1 will be a value of 0 ≤ θ1 ≤ d̂max. Here,
the interval of [0, d̂max] is divided into K equal parts, and the value of each part is

θ1 =
d̂max

K
j, 0 ≤ j ≤ K.

Using each of these values, n(3) is calculated, and the value that makes n(3) smallest is selected
to be the threshold. Here, K = 10. Moreover, for each training sample, its k nearest neighbors
are found. The number of nodes that do not satisfy Rule 1 are found, and the average value of
the numbers is denoted as β

(3)
1 .

3.3.2 Determination of the height of the search tree

As the search tree is heightened by inserting nodes level by level, reduction of calculation times
is tried. If the calculation times is reduced when the search tree is heightened, then one more
level is added. This procedure is repeated till the calculation times do not reduce anymore.
In the meantime, the height of the search tree is decided. When nodes are inserted, they are
inserted between level one and level two as shown in Fig. 4. Fig. 5 shows the tree with height
four that is heightened from the tree shown in Fig. 4.

The estimated calculation times n(4) of the tree with height four shown in Fig. 5 is,

n(4) = M + n
(4)
1 + (M − 1)n

(4)
2 , (10)

where

n
(4)
1 = α

(4)
1 + α

(4)
2 + α

(4)
3 , (11)

n
(4)
2 = α

(4)
1 + β

(4)
1 (α

(4)
2 + β

(4)
2 α

(4)
3 ). (12)

8



In the above expressions, α
(4)
2 , β

(4)
2 and α

(4)
3 correspond to α

(3)
1 , β

(3)
1 and α

(3)
2 in Eqs. (8) and

(9), respectively. In order to obtain the smallest value of n(4), two thresholds are necessary. For
simplicity, θ1 decided in the above section is used. Another threshold θ2 is chosen as follows.
If θ1 is fixed, it means α

(3)
1 , β

(3)
1 and α

(3)
2 are fixed. In other words, Eq. (11) and Eq. (12) can be

rewritten as

n
(4)
1 = α

(4)
1 + n

(3)
1 , (13)

n
(4)
2 = α

(4)
1 + β

(4)
1 n

(3)
2 . (14)

Here, n
(3)
1 and n

(3)
2 can be considered as constants. Threshold θ2 is changed by the same way

used for θ1 in Section 3.3.1, and α
(4)
1 and β

(4)
1 are calculated. The domain interval is [θ1, d̂max].

Therefore, the value that makes Eq. (10) smallest is selected. Moreover, if the result of Eq. (10)
is smaller than the value of Eq. (7), the selected two thresholds are used to construct a tree with
height four. Otherwise, the search tree is completed at height three.

This procedure is repeated until the total calculation times do not reduce any more. There-
fore, the height of search tree H is decided.

3.3.3 Reestimation of the threshold

The search tree constructed by the method described in Section 3.3.1 and Section 3.3.2 is ob-
tained by finding the minimum calculation times of the current level when the calculation times
of the levels larger than the current level is fixed. Continually, the thresholds are estimated again
to obtain the smallest calculation times in total.

As an example, a search tree with height four is explained. Because the total calculation
times can be estimated according to Eq. (10), the thresholds of θ1 and θ2 are chosen to make the
result of Eq. (10) to be minimum. For this purpose, the following two steps are carried out.

• α
(4)
1 and β

(4)
1 in Eq. (13) and (14) are fixed. If the value of θ1 varies, the values of n

(3)
1 and

n
(3)
2 change. Consequently the values of α

(3)
1 , β

(3)
1 and α

(3)
2 also change. Find the value of

θ1 that minimizes Eq. (10).

• n
(3)
1 and n

(3)
2 are fixed. If the value of θ2 varies, the values of α

(4)
1 and β

(4)
1 change. Find

the value of θ2 that minimizes Eq. (10).

The above processes are repeated till convergent or certain times of repetition2. Here, θ1 with
the range of [0, θ2] and θ2 with the range of [θ1, d̂max] are changed by the same way of changing
θ1 described in Section 3.3.1. In the case of the search tree with height five, to minimize the
calculation times of a certain level nodes can be done bottom up with the parameters of other
levels are fixed.

4 Experiments

In order to confirm the effectiveness of the proposed method, experiments are carried out. The
Directional Element Feature [14] whose effect has been shown by character recognition is used
in the experiments. This is a 196-dimensional vector (D = 196). The feature vectors are

2In the experiments done in this paper, processes converge within four times in any cases.

9



0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8

C
om

pu
ta

tio
na

l q
ua

nt
ity

 (
tim

es
)

Number of categories

Traditional method
Fukunaga’s method
Proposed method

M

Figure 6: Results for nearest neighbor rule.

extracted from character images in the handwritten character database ETL9B [15]. Among
the 200 data sets included in this database, 180 sets are used as training data, the other 20
sets are used to be test data. It means the number of training samples in each category is 180
(N = 180). Two kinds of experiments are done. One is done by using the nearest neighbor rule
with changing the number of categories. Another is done by using the k-nearest neighbor rule
with the number of categories is fixed to two. In these experiments, one category corresponds to
one kind of character. In the experiments that uses M categories, the first M categories among
the ETL9B are used.

4.1 Nearest neighbor rule

The experimental results of using the nearest neighbor rule with various numbers of categories
are shown in Fig. 6. In this figure, besides the calculation times of the proposed method, the
calculation times of the traditional method which computes the distances from unknown pattern
to all of the training samples, and the calculation times of the method proposed by Fukunaga
are also expressed. Because the number of training samples is 180, the calculation times of the
traditional method is 180. As shown in the figure, for each value of M , the calculation times
of Fukugana’s method is about 1/2 of that of the traditional method. Moreover, the calculation
times of the method proposed in this paper is less than the result of Fukunaga’s method in every
case. Especially in the case that the number of categories is small, the effectiveness of our
method is extremely large. For example, in the case of two categories, the computation time
of our method is reduced to about one sixth of the traditional method and about one fourth of
Fukunaga’s method.

The structure of the constructed search tree is considered. For all the search tree constructed
by the proposed method, the heights are four. It means the search trees are completed after two
levels of nodes are inserted to the initial trees. In order to give the outline of the search trees,
average number of nodes that have the same parent at the same level is shown in Table 1. The
number of nodes at level one is M that is the number of categories. As shown in the table,
compared with the numbers of nodes at level three and level four, the number of nodes at level

10



Table 1: The number of nodes of the constructed search tree (nearest neighbor rule).

Number of categories 2 3 4 5 6 7
Level 1 2.0 3.0 4.0 5.0 6.0 7.0
Level 2 10.0 11.3 10.0 11.8 11.7 12.3
Level 3 3.3 3.5 4.3 4.3 4.5 4.6
Level 4 5.5 4.6 4.2 3.6 3.4 3.2

0

100

200

300

400

500

0 2 4 6 8 10 12

C
om

pu
ta

tio
na

l q
ua

nt
ity

 (
tim

es
)

Number of neighbors

Traditional method
Fukunaga’s method
Proposed method

k

Figure 7: Results for k-nearest neighbor rule.

two is quite large. It means one category is divided into many clusters. As a result, the clusters
considered unnecessary to be searched are found and dropped out earlier.

4.2 k-nearest neighbor rule

The experimental results of using k-nearest neighbor rule with various number k while the
number of categories is two are shown in Fig. 7. In this figure, besides the calculation times
of the proposed method, the calculation times of the traditional method, and the calculation
times of the Fukunaga’s method are also shown. As shown in the figure, the calculation times
of Fukugana’s method increases with k becoming larger. The experimental results have shown
the calculation times of the method proposed in this paper is less than the results of Fukunaga’s
method in any cases. For example, in the case that k = 11, the computation time of our method
is reduced to about one third of the traditional method and one second of Fukunaga’s method.

The height of all the search trees constructed by the proposed method is four. In order to
give the outline of the search trees, each average number of nodes of the same parent at the
same level is shown in Table 2. The number of nodes at level one is equal to the number of
categories that is two. As shown in the table, the numbers of nodes at level two are large in
the cases of k ≤ 7, while in the cases of k ≥ 9, the numbers of nodes at level three are large.
With k becomes larger, the distance between the unknown pattern and the k nearest neighbors
consequently becomes larger. As a result, the number of nodes satisfied with Rule 1 at level two
is small. For this case, it is effective to increase the number of nodes at level three.

11



Table 2: The number of nodes of the constructed search tree (k-nearest neighbor rule).

Number of neighbors k 1 3 5 7 9 11
Level 1 2.0 2.0 2.0 2.0 2.0 2.0
Level 2 10.0 17.0 17.0 17.0 4.0 4.0
Level 3 3.3 4.8 4.8 4.8 13.4 13.4
Level 4 5.5 2.2 2.2 2.2 3.4 3.4

By analyzing the structure of the search trees constructed in Section 4.1 and Section 4.2, it
is clarified that the efficiency of classification depends on the structure of the search tree. The
method proposed by Fukunaga et al. has not emphasized the importance of the structure of
search tree, however, it is an extremely important factor of fast algorithm.

5 Conclusion

In this paper, in order to realize a fast classification based on the nearest neighbor rule or the k-
nearest neighbor rule, a new algorithm based on branch and bound method is proposed. Further-
more, an algorithm of constructing search tree is proposed. The proposed algorithm minimizes
the total computational cost by estimating calculation times. Finally, the proposed method is
applied to a classification problem using feature vectors extracted from character images. Com-
pared with the traditional method, our method can reduce the computation time in any cases.
Especially, in the case that the number of considered categories and the number of k are small,
the effectiveness of our method is remarkable. For example, for the case of using the nearest
neighbor rule (k = 1) and the number of categories is two, the proposed method is about four
times faster than the traditional method.

To apply the proposed method in practical character recognition is a future work of this
study.

References

[1] T.M. Cover and P.E. Hart, “Nearest neighbor pattern classification,” IEEE Trans. Informa-
tion Theory, vol.IT-13, no.1, pp.21–27, Jan. 1967.

[2] Y. Hamamoto, S. Uchimura, and S. Tomita, “A bootstrap technique for nearest neighbor
classifier design,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol.19, no.1,
pp.73–79, Jan. 1997.

[3] T. Hastie and R. Tibshirani, “Discriminant adaptive nearest neighbor classification,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol.18, no.6, pp.607–615, June 1996.

[4] W.P. Kegelmeyer Jr. and K. Bowyer, “Combination of multiple classifiers using local ac-
curacy estimates,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol.19, no.4,
pp.405–410, April 1997.

12



[5] K. Fukunaga and D.M. Hummels, “Bayes error estimation using Parzen and k-NN pro-
cedures,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol.PAMI-9, no.5,
pp.634–643, Sept. 1987.

[6] L.J. Buturović, “Toward Bayes-optimal linear dimension reduction,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol.16, no.4, pp.420–424, April 1994.

[7] K. Fukunaga and P.M. Narendra, “A branch and bound algorithm for computing k-nearest
neighbors,” IEEE Trans. Computers, vol.C-24, no.7, pp.750–753, July 1975.

[8] A. Djouadi and E. Bouktache, “A fast algorithm for the nearest-neighbor classifier,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol.19, no.3, pp.277–282, March 1997.

[9] P.E. Hart, “The condensed nearest neighbor rule,” IEEE Trans. Information Theory, vol.IT-
14, no.5, pp.515–516, May 1968.

[10] G.W. Gates, “The reduced nearest neighbor rule,” IEEE Trans. Information Theory, vol.IT-
18, no.5, pp.431–433, May 1972.

[11] G.L. Ritter, H.B. Woodruff, S.R. Lowry, and T.L. Isenhour, “An algorithm for a selec-
tive nearest neighbor decision rule,” IEEE Trans. Information Theory, vol.IT-21, no.11,
pp.665–669, Nov. 1975.

[12] C.L. Chang, “Finding prototypes for nearest neighbor classifiers,” IEEE Trans. Computers,
vol.C-23, no.11, pp.1179–1184, Nov. 1974.

[13] I.K. Sethi, “A fast algorithm for recognizing nearest neighbors,” IEEE Trans. Systems,
Man, and Cybernetics, vol.SMC-11, no.3, pp.245–248, March 1981.

[14] N. Sun, M. Abe, and Y. Nemoto, “A handwritten character recognition system by using
Improved Directional Element Feature and subspace method,” Trans. IEICE, vol.J78-D-II,
no.6, pp.922–930, June 1995 (in Japanese).

[15] T. Saito, H. Yamada, and K. Yamamoto, “On the data base ETL9 of handprinted Char-
acters in JIS Chinese characters and its analysis,” Trans. IEICE, vol.J68-D, no.4, pp.757–
764, April 1985 (in Japanese).

Authors

Shin’ichiro Omachi received his B.E., M.E. and Doctor of Engineering degrees in Informa-
tion Engineering from Tohoku University, Japan, in 1988, 1990 and 1993, respectively. He has
worked as a research associate at the Education Center for Information Processing at Tohoku
University from 1993 to 1996. He is now an associate professor at Graduate School of En-
gineering, Tohoku University. His research interests include pattern recognition and parallel
processing of images. Dr. Omachi is a member of the IEEE, the Institute of Electronics, Infor-
mation and Communication Engineers, the Information Processing Society of Japan, and the
Japanese Society of Artificial Intelligence.

13



Hirotomo Aso received his B.E., M.E., and Doctor of Engineering degrees in Electrical Engi-
neering from Tohoku University, Japan, in 1968, 1970, and 1974, respectively. He was with
the Department of Information Engineering, Tohoku University in 1973, and later joined the
Faculty of Engineering, Nagoya University from 1979 to 1986. He is now a professor at To-
hoku University. He is presently engaged in research of character pattern recognition, cellular
automata, concurrent program schema, and parallel processing. He has received the Young
Engineer Award of IEICEJ in 1978 and Achievement Award of IEICEJ in 1992. Dr. Aso is a
member of the Institute of Electronics, Information and Communication Engineers, the Infor-
mation Processing Society of Japan, the Japanese Society of Artificial Intelligence, Japanese
Cognitive Science Society, IEEE, EATCS, and ACM.

14


