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Abstract

For a practical pattern recognition system, noisy pattern
recognition is necessary and important. There are several
basic ideas of recognizing noisy patterns, for example, con-
structing a dictionary with noisy patterns, applying different
classifiers, or using filters to delete noise. In most conven-
tional statistical pattern recognition methods, a feature vector
is extracted from an object. The distribution of feature vec-
tors is estimated for each category to select a candidate for
an unknown input pattern. As it is known, the distribution of
feature vectors will change if noise occurs. It is impossible to
predict all kinds of noise that happen accidentally and irreg-
ularly. In this paper, an attempt to deal with noisy patterns is
examined, and a new discriminant function is proposed. By
introducing arevision matrixcalculated from an unknown in-
put pattern, the new function can be defined as a revised form
of traditional function with the degree of detected noise of
each individual pattern. The ability of the proposed function
is evaluated by experiments on discrimination of two cate-
gories. Experimental results not only show the classification
effectiveness of the proposed function, but also confirm that
it is enormously important to detect the noise and to revise
the discriminant function for noisy pattern recognition.

1 Introduction

Significant achievements are made by statistical pattern
recognition methods considering distribution of sample pat-
terns in feature space. In most conventional pattern recogni-
tion methods, the first step is to extract features from objects.
These features are always expressed in form of feature vec-
tors. Then, the distribution of feature vectors is estimated for
each category using training data. Finally, the category with
the maximum probability is selected to be the candidate of
an unknown input pattern.

Because noisy pattern recognition is necessary and impor-
tant for a practical pattern recognition system, it has lately
attracted considerable attention. For example, in the field of
character recognition, several methods for recognizing poor
quality characters have been proposed. Hobby et al. [1] de-
veloped a method to enhance degraded document images by
finding and averaging bitmaps of the same kind of symbols.

It improves the display appearance and recognition accuracy.
Chou et al. proposed a flexible matching method between
template images and unknown character images [2]. A vec-
tor field, called character deformation field, is used for repre-
senting deformation. Rodr´ıguez et al. exploited a two-stage
classifier [3]. First, a multifont classifier is applied. Then,
a specialized classifier rerecognizes the ambiguous patterns
using the patterns whose certainty of correct classification is
high.

With the spread of digital cameras, some studies on recog-
nizing poor quality characters included in the images taken
by digital cameras have been done [4], [5], [6]. Sawa et al.
use Gaussian Laplacian filter to emphasize the image [4].
Then character segmentation and recognition are done with
dynamic programming. The moving subtraction method is
proposed by Kosai et al. [5]. It uses plural images by
swinging a camera vertically and horizontally, and supple-
ments the bad influence caused by the lowness of resolution.
The method developed by Sawaki et al. prepares a multiple-
dictionary to deal with the images under any conditions [6].
The environment condition of an image is estimated, and a
relevant dictionary reflecting the condition is used for recog-
nition.

Although the above approaches have obtained effects, it is
thought there is a limit to apply multiple classifiers or dic-
tionaries because noise is intricate and volatile. Since types
of noise are always quite different from each other, no one
can predict what kind of noise an unknown input pattern
will carry. Because noise may change the appearance of an
unknown input pattern, the feature vector extracted from a
noisy pattern will be very different from clear ones. As an
empirical result, in the case that the distribution is estimated
with only noiseless samples, whereas the unknown input pat-
tern is noisy, the recognition result is always unsatisfactory.
On the other hand, even if the distribution is estimated with
noisy samples, there is no guarantee that the type of noise
of an unknown input pattern is included in training samples.
Moreover, using a dictionary constructed by noisy patterns
is also inappropriate to recognize clear patterns. Therefore,
how to select training samples is not the most essential ele-
ment of constructing a dictionary for recognizing both clear
and noisy patterns.

The aim of our study is to develop a discriminant function



that can cope with different qualities of patterns and different
kinds of noise. For this purpose, a discriminant function is
proposed that can dynamically quantify noise and formulate
the relationship between noise and the change in distribution.
Experiments are done to compare the proposed function with
other attempts.

The organization of the rest of the paper is as follows. In
Section 2, a new discriminant function that includes revision
matrix is proposed. In Section 3, experimental methods are
described and the experimental results are discussed. Finally,
Section 4 shows that the proposed revision matrix can be in-
troduced to various discriminant functions, and those func-
tions can be applied to the case of treating high dimensional
feature vectors.

2 A New Discriminant Function

In the course of observation, it is very difficult to avoid the
addition of noise. In the case that noise is mingled in some
elements of a feature vector, while the other elements are
noiseless, the standard deviation of the noisy element will
become larger according to the degree of noise. In this sec-
tion, a discriminant function reflecting change in distribution
according to the noise is defined.

2.1 Definition

Here, the Mahalanobis distance is considered. Letµ andΣ
be the mean vector and then× n covariance matrix, respec-
tively. The squared Mahalanobis distance fromµ to x is
defined as

d2 = (x − µ)tΣ−1(x − µ). (1)

The squared Mahalanobis distance is abbreviated as the Ma-
halanobis distance below.

For simplicity, the case of two-dimensional normal distri-
bution is discussed first. As shown in Fig. 1(a),e1 ande2 are
the axes of the original coordinate. Letφ1 be the eigenvec-
tor that corresponds to the first principal component. Whenb
degrees of noise is added to thee1-element whilee2-element
is noiseless, we can observe that only the standard deviation
of e1-element becomesrb times larger. Then the change in
the distribution can be illustrated as Fig. 1(b).

In general, letb(j) be the degree of noise added to thejth
element ofn-dimensional feature vectorx. Then we can ob-
serve that the mean vector is not changed and the standard de-
viation of jth element ofx becomesrb(j) times larger where
rb(j) is determined depending on the valueb(j). A diagonal
matrixK is defined as

K =




rb(1) 0
rb(2)

. . .
0 rb(n)


 , (2)
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Figure 1: Change in distribution.

which is called the revision matrix. For noiseless elements,
sayj, rb(j) = 1.

Let xi be a noiseless sample, andyi be a sample with
noise (i = 1, 2, ..., N ). The mean vectorµ and unbiased
covariance matrixΣ of noiseless samples are calculated as
follows.

µ =
1
N

N∑
i=1

xi, (3)

Σ =
1

N − 1

N∑
i=1

(xi − µ)(xi − µ)t. (4)

The observation on the change of deviation by noise may be
described as the following. Let

xi = µ + x′
i, (5)

andyi be the corresponding noisy data such that

yi = µ + y′
i. (6)

If the jth element ofy′
i is changed fromx′

i as

y′
ij = rb(j)x

′
ij , (7)



then the standard deviation̂σj of y′
ij is rb(j) times larger than

that ofx′
ij , since

σ̂j =

√√√√ 1
N

N∑
i=1

(y′
ij)2

=

√√√√ 1
N

N∑
i=1

(rb(j)x
′
ij)2

= rb(j)

√√√√ 1
N

N∑
i=1

(x′
ij)2. (8)

From Eq. 7,y′
i can be written as

y′
i = Kx′

i. (9)

The covariance matrix of noisy samplesΣ̂ is calculated
using Eqs. 5, 6 and 9.

Σ̂ =
1

N − 1

N∑
i=1

(yi − µ)(yi − µ)t

=
1

N − 1

N∑
i=1

(y′
i)(y

′
i)

t

=
1

N − 1

N∑
i=1

(Kx′
i)(Kx′

i)
t

=
1

N − 1

N∑
i=1

K(xi − µ)(xi − µ)tK

= KΣK. (10)

In order to reflect the change in distribution, the following
discriminant function that includes the revision matrixK is
proposed.

d̂2 = (x − µ)tΣ̂−1(x − µ)
= (x − µ)t(KΣK)−1(x − µ)
= (K−1(x − µ))tΣ−1(K−1(x − µ)). (11)

Eq. 11 is calledAdaptive Mahalanobis distance. The inverse
matrix of K can easily be calculated sinceK is a diagonal
matrix. Hence the computation time for recognition using
Eq. 11 is not so large compared with recognition using Eq. 1.

2.2 K in Character Recognition

In this section, the method of how to decide the revision ma-
trix K in a practical application is described. As the applica-
tion, we consider the case of character recognition.

The authors have proposed an algorithm that detects
blurred parts of character image and modify the discrimi-
nant function according to the detected blur [7]. Blurred part
detection is done in the thinning process. Thinning is a re-
peating process of erasing a black pixel from boundaries of

(a) Normalized (b) 3 times erased (c) 6 times erased (d) Skeletonized

(A) Blurred image.

(e) Normalized (f) 1 time erased (g) 2 times erased(h) Skeletonized

(B) Clear image.

Figure 2: Thinning process of blurred image and clear image.

Figure 3: Detected blurred area.

black pixels of character image. By scanning neighbor pix-
els around each black pixel, stroke width of character image
is finally erased to one-pixel [8], [9]. Figs. 2(a) and 2(e) are
examples of a normalized blurred image and a clear image,
respectively. Thinning process of these images are shown
by Figs. 2(b)∼2(d) and Figs. 2(f)∼2(h), respectively. In or-
der to get completely thinned image of Fig. 2(d), ten times
are needed to erase pixels on boundaries, while Fig. 2(h) re-
quires only six times. If the repeating times in thinning pro-
cess is limited to the number that a clear image is completely
thinned, obviously it will not be enough for a blurred one
and blurred area will remain. The pre-experimental result
has shown usually six is the optimum number of times for
thinning a clear image. An area can be regarded as a blurred
one if any line width in the area is more than one-pixel af-
ter being thinned six times. Black region of Fig. 3 displays
the detected blurred region of Fig. 2(c). After detecting the
blurred part of input image, thedegree of blurof each area is
examined. Then, the standard deviation of the feature vectors
of the areas withb degrees of blur and that of the areas with
0 degree is calculated. The ratio of these standard deviations
is denoted asrb. By the ratiorb, the revision matrixK is
constructed.



3 Experiments

We assume that revising a discriminant function according to
detected noise is much more important than gathering noisy
training samples for dictionary. In order to verify this as-
sumption, four kinds of experiments are done to compare
the effectiveness of two different dictionaries that are con-
structed with clear data and noisy data, and also, to confirm
the ability of the proposed discriminant function of Eq. 11
and the Mahalanobis distance of Eq. 1.

Here, two appropriate categories, called Category A and
Category B, which haven-dimensional normal distribution
are given. Their distributions are assumed to beN(µA, ΣA)
andN(µB, ΣB).

3.1 Testing Data

By generating random numbers,n-dimensionalNE vectors
whose distribution isN(µA, ΣA) are obtained, and this set of
vectors is calledEA. Another setEB is produced in the same
way that includesn-dimensionalNE vectors whose distribu-
tion is N(µB, ΣB). Here,n = 196 andNE = 10000. The
value ofn is selected from the number of dimensions of a
feature vector, called the Improved Directional Element Fea-
ture [10], that is proposed for Chinese character recognition.
Using sample character images,µA, ΣA, µB andΣB are cal-
culated. Moreover, a set of vectorsE′

A is obtained by adding
noise to each vector inEA as the following way. Let the
mean vector of setEA be

µA = (µA1, µA2, ..., µAn),

and the diagonal components ofΣA beσ2
A1, σ2

A2,...,σ2
An. A

vectorv in EA is denoted as

v = (v1, v2, ..., vn) ∈ EA.

Selectk elements randomly fromn elements ofv. Denote
these selected elements asva1 , va2 , ..., vak

. The element
vai(1 ≤ i ≤ k) is replaced by a value whose distribution
is one-dimensional normalN(µAai , (rσAai)2) and obtained
by random numbers. Here,r represents theratio of standard
deviations mentioned in Section 2.1 asrb. In the same way
as makingE′

A, noise is added to each vector inEB , and a
new setE′

B is generated.
In the following, how distribution changes if different lev-

els of noise is added to certain elements of vectorv is inves-
tigated. By using Fisher’s linear discriminant [11], elements
of EA andEB are projected onto the line that discriminates
these categories optimally. The histogram on this line is ex-
pressed in Fig. 4(a). This figure shows thatEA andEB can
be discriminated by linear discriminant function. Moreover,
error rate using Eq. 1 is estimated by resubstitution method
[12], which gives the lower bound of the true error rate.
Mean vectors and covariance matrices are calculated from
the setsEA andEB , then samples in the same setsEA and

EB are classified by Eq. 1. The rates of misclassification is
0%.

After producing E′
A and E′

B under the condition that
k = 4 andr = 10.0, elements ofE′

A andE′
B are projected

onto the line that discriminates these categories optimally.
The histogram on this line is illustrated in Fig. 4(b). Further-
more, Fig. 4(c) shows the terrible case of noise whenk = 12
andr = 20.0. In these two cases,E′

A andE′
B cannot be dis-

criminated linearly. Error rates of (b) and (c) are estimated
using Eq. 1 by resubstitution method, which are 7.51% and
21.4%. These results show thatE′

A andE′
B cannot be dis-

criminated by the Mahalanobis distance either.

3.2 Training Data

Training data is similarly generated as the testing data. By
producing random numbers,NT vectors with distribution
N(µA, ΣA) andNT vectors with distributionN(µB, ΣB)
are obtained. These sets are different fromEA andEB , and
these are denoted asTA andTB. Here,NT = 10000. T ′

A

andT ′
B are obtained by adding noise to each vector inTA

andTB in the same way asE′
A andE′

B, respectively. The
pair of noiseless sets (TA, TB) and the pair of noisy sets (T ′

A,
T ′

B) are adopted as training data. Here, a set of mean vector
and covariance matrix calculated from training data is called
dictionary. The dictionaries of the noiseless setsTA andTB

are (̃µTA
, Σ̃TA ) and (̃µTB

, Σ̃TB ). The dictionaries of noisy
setsT ′

A andT ′
B are (̃µT ′

A
, Σ̃T ′

A
) and (̃µT ′

B
, Σ̃T ′

B
).

3.3 Methods

The noisy testing data setsE′
A and E′

B are discriminated
by the traditional and Adaptive Mahalanobis distance. Two
kinds of functions are used as the discriminant functions for
each of the dictionaries of noiseless and noisy training data.
Therefore, four kinds of experiments are done in total. In
these experiments, various values ofk andr are examined.
The revision matrixK can be defined by the parameterr,
which actually is the level of added noise. The revision ma-
trix K is defined for each categoryA andB, and its effec-
tiveness of discriminating noisy patterns is determined.

Table 1 shows the combination of mean vectors, covari-
ance matrices, and discriminant functions for each experi-
mental method. Qualitative meaning of each method is de-
scribed as follows.

C-TM: Clear data – Traditional Mahalanobis.

Dictionaries are made with noiseless data, and the tradi-
tional Mahalanobis distance (Eq. 1) is used for discrim-
ination.

N-TM: Noisy data – Traditional Mahalanobis.

Dictionaries are made with noisy data, and the tradi-
tional Mahalanobis distance (Eq. 1) is used for discrim-
ination.
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Figure 4: Distribution of testing data with different degree of
noise.

Table 1: Four kinds of experiments.

Method Function Dictionary of
Category A

Dictionary of
Category B

C-TM Eq. 1 (µ̃TA
, Σ̃TA) (µ̃TB

, Σ̃TB )

N-TM Eq. 1 (µ̃T ′
A

, Σ̃T ′
A

) (µ̃T ′
B

, Σ̃T ′
B

)

C-AM Eq. 11 (µ̃TA
, Σ̃TA) (µ̃TB

, Σ̃TB )

N-AM Eq. 11 (µ̃T ′
A

, Σ̃T ′
A

) (µ̃T ′
B

, Σ̃T ′
B

)

C-AM: Clear data – Adaptive Mahalanobis.

Dictionaries are made with noiseless data, and proposed
discriminant function (Eq. 11) is used for discrimina-
tion.

N-AM: Noisy data – Adaptive Mahalanobis.

Dictionaries are made with noisy data, and proposed
discriminant function (Eq. 11) is used for discrimina-
tion.

3.4 Experimental Results

Fig. 5 shows the error rates of classification. Fig. 5(a) repre-
sents the results that the number of noisy elements is fixed to
four and various values ofr are adopted. Fig. 5(b) illustrates
the results that the ratior is fixed to 10.0 and various values
of k are used.

The figures have shown that the error rates of C-TM and
N-TM increase withk or r becoming larger. The error rate
of C-TM is relatively high even for smallk andr. Compar-
ing with the result of C-TM, the error rate of N-TM is much
smaller, that means it is rather effective to make dictionaries
with noisy patterns for recognizing image with noise.

The error rate of C-AM increases withk becoming larger,
while it is not sensitive tor. In other words, error rate in-
creases as the number of noisy elements becomes larger but
it is not sensitive to degree of noise. Ifr is small, the result
of N-TM is better than C-AM. However, ifr ≥ 5, the error
rate of C-AM is smaller than that of N-TM.

Moreover, the error rate of N-AM is 0% under any param-
eters. As described in Section 3.1, error rate ofE′

A andE′
B

using the traditional Mahalanobis distance under the condi-
tion thatk = 12 andr = 20.0 is more than 21.4%. (Dis-
tribution of this case can be seen in Fig. 4(c).) However, the
error rate of N-AM here is 0% even ifk = 12 andr = 20.0.

These results confirm that it is not enough to make a dic-
tionary with noisy data for recognizing extremely noisy pat-
terns. The more important matter is to detect the noise and
to revise the discriminant function. These experimental re-
sults clearly prove that the proposed method supplements the
existing statistical methods and has high ability of classifica-
tion.
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4 Application to the Other Discrimi-
nant Functions

Although the Mahalanobis distance is a very valid criterion,
in the case of treating high dimensional vectors, e.g., recog-
nizing character patterns, it is known that the Mahalanobis
distance has disadvantages such as the large computation
time and bad influence caused by limited samples [13], [14],
[15]. To resolve these problems, various modifications of
the Mahalanobis distance are proposed. In this section, it is
shown that the revision matrixK can be introduced to those

functions. Typical three are Quasi-Mahalanobis distance
[16] (QMD), Modified Mahalanobis distance [17] (MMD),
and Simplified Mahalanobis distance [18] (SMD). To explain
these functions, Eq. 1 is rewritten as

d2 =
n∑

i=1

1
λi

((x − µ)tφi)
2 (12)

=
m∑

i=1

1
λi

((x − µ)tφi)
2

+
n∑

i=m+1

1
λi

((x − µ)tφi)
2. (13)

Here,n is the number of dimensions of feature vector, and
λi is theith eigenvalue ofΣ sorted by descending order, and
φi is the eigenvector that corresponds toλi.

The QMD replacesλi of the second term in Eq. 13 with
λm+1. In the MMD, the second term in Eq. 13 is neglected,
and instead ofλi in the first term,λi + b is used, whereb is
a bias (b = 5). The SMD replacesλi of the second term in
Eq. 13 with the mean value ofλi (i = m + 1, ..., n). Denote
the QMD, the MMD and the SMD asdQ, dM anddS , these
are written as,

d2
Q =

m∑
i=1

1
λi

((x − µ)tφi)
2

+
1

λm+1

n∑
i=m+1

((x − µ)tφi)
2, (14)

d2
M =

m∑
i=1

1
λi + b

((x − µ)tφi)
2, (15)

d2
S =

m∑
i=1

1
λi

((x − µ)tφi)
2

+
n∑

i=m+1

1
λ

((x − µ)tφi)
2 (16)

=
m∑

i=1

1
λi

((x − µ)tφi)
2

+
1
λ

{
||x − µ||2 −

m∑
i=1

((x − µ)tφi)
2

}
,(17)

where

λ =
1

n − m

n∑
i=m+1

λi (18)

=
1

n − m

{
trΣ −

m∑
i=1

λi

}
. (19)

Here,trΣ denotes the trace ofΣ. Effectiveness of these func-
tions for character recognition has been shown [17], [18]
with the large handwritten Japanese and Chinese character
database ETL9B [19]. So, the revision matrixK should be



introduced for such functions rather than the original Maha-
lanobis distance for practical applications.

Denote the QMD, the MMD and the SMD withK asd̂Q,
d̂M andd̂S , respectively. These are written as follows.

d̂2
Q =

m∑
i=1

1
λi

((K−1(x − µ))tφi)
2

+
1

λm+1

n∑
i=m+1

((K−1(x − µ))tφi)
2, (20)

d̂2
M =

m∑
i=1

1
λi + b

((K−1(x − µ))tφi)
2, (21)

d̂2
S =

m∑
i=1

1
λi

((K−1(x − µ))tφi)
2

+
n − m

trΣ − ∑m
i=1 λi

{
||K−1(x − µ)||

−
m∑

i=1

((K−1(x − µ))tφi)
2

}
. (22)

The computation time of each of the above functions is not
so large compared with the function withoutK.

5 Conclusions

For most statistical methods of pattern recognition, to give
the exact expression of distribution of feature vectors is the
first step of accurate recognition. However, in the case that
noise is included in a pattern, the feature vector will be quite
different from the same kind of clear pattern. Since noise
occurs irregularly and accidentally, it is thought difficult to
estimate a dictionary that can cope with all kinds of noise by
using a lot of kinds of noisy training patterns.

In this paper, considering the characteristic of noise, a new
discriminant function for recognizing noisy pattern is pre-
sented. The revision matrix reflecting the change in distribu-
tion of category caused by the detected noise is constructed.
Very satisfactory performance of the modified discriminant
function has been shown by experiments with artificial data.
These results not only indicate the effectiveness of the pro-
posed function, but also confirm that it is important to detect
the noise and to revise the discriminant function for noisy
pattern recognition.

Moreover, it is shown that the revision matrix can be easily
applied to various discriminant functions. In some cases, es-
pecially when the dimension of the feature vector is high, the
modified version of the Mahalanobis distance is more effec-
tive for pattern recognition than the original one. These dis-
criminant functions can be used for practical noisy pattern
recognitions such as character recognition, speech recogni-
tion, face recognition, and so on.
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