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Abstract

In this paper, we proposed a reference-based super res-
olution method to tackle the super resolution task. The
existing super resolution methods could be roughly di-
vided into three types: Single Image Super Resolution
(SISR), Multi-frame Super Resolution (MFSR) and the
Reference-based Super Resolution (Reference-based SR).
Recently, SISR and MFSR have been widely studied.
However, these SR methods have limited performance due
to the loss of the information in the low-resolution images.
This limitation will degrade performance when the under-
resolved images are at a very low-resolution level. As a
solution of this limitation, the proposed reference-based
SR method has three advantages: 1) With the support
of the high-resolution reference frame, the performance
of the SR model is able to be further improved; 2) With
only two input images, the calculation cost can be cut off
compared with the MFSR methods; 3) With the help of
the reference, it allows the proposed model to obtain supe-
rior results even when dealing with the very poor quality
images, which beneficial to the data reduction. To evalu-
ate the proposed model, we did a lot of experiments and
compared our model to the baselines with both quantita-



tive and visual estimations. We experimented under both
scaling factors of×2 and×4, and found that the proposed
method could recover high quality super-resolved images
from a very low resolution level. This experiment results
showed the superiority of the proposed model on the very
poor quality images. In the analysis, we assumed a video
compression system and conducted video super resolu-
tion experiments using the proposed method. Finally,
we found a better fashion for the video super resolution
and verified the practicability of this video compression
system.
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1 Introduction

1.1 Background

Super resolution (SR) technology is widely known in image process-
ing. Image super resolution aims at converting a low-resolution (LR)
image into a high-resolution (HR) level. Recently, super resolution
has been widely studied. Single image super resolution (SISR) is
the most popular task of the SR techniques. Dong [5] realized an
end-to-end mapping from low-resolution image to high-resolution
image by using a simple three-layer network called SRCNN. Since
then, learning-based super resolution method using Convolution neural
network (CNN) has attracted attention of many researchers due to its
outstanding performance. Kim [9] improved the SR performance by
increasing the depth of the network to 20 layers. It can be considered
that the depth of the network has a great affect on the super resolu-
tion. Such observation has been seen in the image recognition field.
Lim [14] proposed EDSR and MDSR respectively and showed the
importance of network depth on the super resolution research.

Multi-frame super resolution (MFSR) is another kind of super resolu-
tion task, which utilizes a series of LR frames as input to super-resolve
one of them. Different from SISR, MFSR takes advantage of time
information which is suitable for the video super resolution. Huang
[8] proposed to combine the bidirectional recurrent neural network
(RNN) and the 3D convolutional network. Such architecture success-
fully made use of the bidirectional time information and had a good
progress on the MFSR methods. However, such methods suffer from
high computational cost especially when using the 3D convolution.

However, there exist a limitation either for SISR or MFSR. Since LR
images are inherently devoid of information, such methods can hardly
recover these images to a real high-resolution level. Therefore, the
proposed method focused on the SR method using reference frame.
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Figure 1: Simple illustration of the reference-based super resolution.

Reference frame is an high-resolution adjacent image of the target
frame to be super-resolved. In the proposed method, we input it as
a reference to help the super resolution. A simple illustration of our
reference-based super resolution is showed in Figure 1.

The main advantages of our work are three-folds:

1. With the support of the reference frame, most of the information
in the target frame is kept. Thus the SR performance can be
expected to be further improved.

2. Compared with the MFSR, reference-based method has less
input images, which cuts off the computational cost.

3. Since the reference frame maintains rich information, we can
recover the target frame even from a lower level, which is bene-
ficial to the data reduction.
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1.2 Purpose

In conclusion, our research aims at realizing the video super resolution
using the reference frames. While utilizing the motion vector between
the target and the reference, we successfully applied the high-frequency
details of the reference frame to the reconstructed target frame.

1.3 Definition

For the convenience of writing, we define the following specific terms.

1. Target frame: The frame image to be super resolved.
2. Reference frame: high-resolution adjacent frame of the target

frame, which is different from but shares abundant similar infor-
mation with the target frame.

3. LR: Low-resolution image of target frame.

1.4 Composition

The composition of this paper is as follows.

1. Introduction: Described the background and purpose of this
research.

2. Related Works: Studies related to the super resolution.

3. Proposal: Details of the proposed method.

4. Experiments: Comparison experiments on the baseline model
and the proposed model.

5. Conclusion: Conclusion of the paper and the future work.
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2 Related works

2.1 Super Resolution

Recently, super resolution has been widely studied. The current super
resolution methods could be roughly divided into 3 types: Single
image SR, Multi-frame SR and Reference-based SR. As the most
widely studied SR method, SISR got a significant progress during past
5 years. A lot of well designed networks have been proposed which
boosted the performance of the super resolution. Kim [10] developed
a deeply-recursive network. Adding a loss to each recursive unit, this
method successfully reduced the loss and improved the performance of
the network. Inspired from the Laplacian Pyramid, Lai [11] proposed
to operate the super resolution level by level. Different from the above
approaches, there is another kind of GAN-based method, which aims at
generating photo-realistic images instead of recovering the LR images
to the original ones. From this perspective, Ledig proposed SRGAN
[12] which could generate texture details when super-resolving at a
large upscaling factors.

While SISR methods only deal with a single image, Multi-frame SR
methods deal with a series of consequent frames, which hold more
useful information, e.g., time and motion. Huang [8] proposed a
bidirectional network to make use of the time information for the super
resolution. Liu [15] introduced the optical flow in the network to make
an alignment of the frames. However, the common weak point of these
methods is the high- computational cost.

2.2 Reference-based SR

In addition of the above two types of SR methods, Reference-based
SR method as a minor approach of the super resolution has attracted
attentions in recent years. In the Reference-based methods, a high-
resolution reference image is utilized when super-resolving the LR
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image. Normally, these HR reference images are different images
from the LR ones but share some similar relationship with each others.

The reference images could be roughly divided into two types: 1)
images that share similar texture features with the target images; 2)
images similar to the targets but taken from different viewpoints. For
the first category, [20, 19] proposed a Natural Texture Transfer. They
extracted features from both LR and HR images and let them get
through a reference-conditioned texture transfer. In the transfer, corre-
sponding texture features will be adopted into the LR images. With
different references, different textures will be adopted.

For the references taken from different viewpoints, most of the
Reference-based methods adopted a patch-based [2, 21] approach,
which had a match between the low-resolution patches and the high-
resolution ones. For matching the LR and HR patches, [2] first down-
sampled the HR patches then calculated the features, which did not
make full use of the high frequency features of the HR references. In
addition, patch-based approaches inherently lack the flexibility for the
non-rigid deformation of the super resolution. To tackle this prob-
lem, Zheng [7] proposed to make use of the optical flow instead of
the patch matching manner. However, this method operated on the
super-resolved images, which we think might be a waste of calculation.
In this paper, we leverage the adjacent frames as the reference.

2.3 Optical Flow

To make use of the motion vector between the LR and the reference
frame, we introduced optical flow in our proposed model. Optical
flow is the instantaneous velocity of the relatively moving pixel in
an observed image. Under sequences of ordered images, optical flow
can be calculated from the relationships between the adjacent frames.
Given a pair of frames, the position of pixel A is (x1, y1) in the t-th
frame, while the position changes to (x2, y2) in the (t + 1)-th frame,
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Supplementary Material for ‘FlowNet: Learning Optical Flow with
Convolutional Networks’

1. Flow field color coding

To visualize the flow fields, we use the tool provided with
Sintel [7]. Flow direction is encoded with color and mag-
nitude with color intensity. White corresponds to no mo-
tion. Figure 1 illustrates flow color coding: the flow vector
at each pixel is a vector from the center of the square to
this pixel. Since the magnitudes of flows in different im-
age pairs shown in the main paper are very different, we
independently normalize the maximum color intensity for
each image pair, but in the same way for different methods
applied to one image pair.

2. Details of generating Flying Chairs

We explain in detail the process of generating the Flying
Chairs dataset. As background we use 964 images of reso-
lution 1024⇥ 768 pixels, downloaded from Flickr. As fore-
ground objects we use 809 chair models from the dataset of
Aubry et al. [1], each rendered from 62 views: 31 azimuth
angles and 2 elevation angles. To generate the first image in
an image pair, we take a background image and randomly
position a random set of chairs ontop. The number of the
chairs is sampled uniformly from [16; 24], the types and
viewpoints of the chairs are sampled uniformly and the lo-
cations of the chairs are sampled uniformly from the whole
image. The sizes of the chairs (in pixels) are sampled from
a Gaussian with mean 200 and standard deviation 200, and
then clamped between 50 and 640.

To generate the second image in a pair and the flow field,
we apply random transformations to the chairs and the back-
ground. Each of these transformations is a composition of
zooming, rotation and translation. The parameters to sam-
ple are the zoom coefficient, the rotation angle and the trans-
lation vector. We aim to roughly match the displacement
distribution of Sintel, shown in Fig. 2 (left). Simply sam-
pling the transformation parameters from Gaussians results
in too few small displacements, we hence make the distri-
butions of the transformation parameters to be more peaked
around zero than Gaussians.

The family of distributions from which we sample the
parameters contains mixtures of two distributions: a con-
stant µ with probability 1 � p and a power of a Gaussian

Figure 1. Flow field color coding. The central pixel does not move,
and the displacement of every other pixel is the vector from the
center to this pixel.
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Figure 2. Histogram of displacement distribution in Sintel (left)
and Flying Chairs (right) with linear (top) and logarithmic (bot-
tom) y-axis. The distribution was cut off at the displacement of
150 pixels, the maximum flow in Sintel is actually around 450
pixels.

with probability p. More precisely, let � ⇠ N (µ, �) be a
univariate Gaussian. We raise its absolute value to a power
k (keeping the sign) and clamp to the interval [a, b]. We
then set the value to µ with probability 1 � p. Overall, the
result is given by:

⇠ = � · max(min(sign (�) · |�|k, b), a) + (1 � �) · µ,

Figure 2: Color coding of the optical flow. Different colors represent
different directions and the intensity represents the magnitude of the
velocity.

i.e.,

It(x1, y1) = It+1(x2, y2) = It+1(x1 + u, y1 + v) (1)

The optical flow between the two frames could be calculated as (u, v),
so we can obtain a 2-channel optical flow image with the same size of
the frames.

Optical flow is usually visualized using color coding. As showed
in Figure 2, every pixel in the image indicates the displacements of
two directions. Different colors represent different directions and the
intensity represents the magnitude of the velocity.
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Figure 3: Architecture of our proposed method.
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Figure 4: Downsample Encoder. The number of the downsample
layers is determined by the scale level of the LR frame, which is
computed as l = log2L where L denotes the scaling factor.

3 Proposal

In this section, we will explain the details of the proposed method.

3.1 Overview

The main architecture of the proposed network is displayed in Figure 3.
First, we define the mathematical system as follows. As we can see
from the Figure 3, there are two inputs in our model. One is LR which
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Figure 5: Architecture of the FlowNetS.

Figure 6: Examples of the optical flow prediction in the FlowNet.

refers to the low-resolution image x downsampled from the original
high-resolution ground truth y with the scaling factor L. Another is
the reference high-resolution frame r, which refers to the adjacent
frame of x. SR refers the super-resolved image which we denote it as
ŷ.

First we calculate the optical flow between the LR and the reference
frames via FlowNet, and both of the two inputs frames should get
through their corresponding encoders. Then the encoded feature maps
of the reference frame will be warped with different scales of optical
flows. These warped features, which contain abundant high-frequency
details, will be concatenated to the encoded and extracted feature maps
respectively to introduce high-frequency reference. Finally, the super-
resolved target frame can be obtained by getting through a decoder.

Thus the proposed model can be described as

ŷ = F (x|(θ, r)) (2)

where F denotes the proposed model and θ denotes the parameter set
of F .

14



3.2 Optical flow and Warp

3.2.1 FlowNet

To make full use of the reference frame, we introduced optical flow in
the network. By warping with optical flow, we successfully applied
those high-frequency details to the LR image. To calculate the optical
flow between x and r, we exploit FlowNet[6] in our model.

FlowNet is a neural network model that was proposed to calculate the
optical flow of two images. Here we utilized the FlowNetS model
in our method which is illustrated in Figure 5. The two images are
concatenated before input into the network. It first extracts the features
of the two concatenated images by decreasing the size of the feature
maps and increasing the feature channels gradually. Then with the
refinement network, the optical flow will be predicted from low size
feature maps to the upsampled original size of the images.

To make it applicable for our model, we replace the last linear interpo-
lation layer with the convolution layer to calculate the corresponding
size of the optical flow. Two examples of the performance in the
FlowNet[6] are showed in Figure 6. The first column displays the
ground truth of the optical flow, and the second and third columns
are the predicted optical flows calculated using the FlowNetS and
FlowNetS+v respectively.

To predict the optical flow between the LR and reference frames, we
first upscale the LR to the original size using the bicubic kernel. By
input the two frames into the FlowNet, we can have predicted flows as
follow:

(fl, f0) = FlowNet(xup, r) (3)

where xup denotes the upscaled LR frame. fl denotes the predicted
flow of the l-th scale level.
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3.2.2 Encoder and Decoder

Since the LR and reference frames are of different size, we first encode
the two input frames as the preparation for warping. Image warping is
a kind of image processing of image distortion and affine, i.e., with
the calculated optical flows, we can distort the image to the after-
movement image based on the motion vector.

The illustration of the encoding phase is displayed in Figure 7. LR
frame is directly input a 2-convolution-layer encoder, while the refer-
ence frame has to get through two encoders. The first one is the same
as LR frame and the second one is an additional downsample encoder.
The encoded data can be described as follow:

Xe = Ex(x) (4)

Re = Er(r) (5)

RD = Ed(Re) (6)
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where Ex and Er denote the convolution encoders of LR and refer-
ence frames respectively. Ed denotes the downsample encoder. After
encoding, the encoded data of the reference frame rD will be warped
with the predicted flow fl

Rl
w = warp(fl, RD) (7)

Finally, we concatenate the encoded xe and the warped rD as the input
of the decoder

X l
d = Dl([Xe, RD]) (8)

where [·] denotes the concatenation operation and Dl denotes the
decoder for the l-th scale level data. X l

d here refers to the decoded data
of the l-th scale level.

3.3 Feature Extraction

When finished warping at the low scale level, we will enter the feature
extraction part. As we mentioned in the introduction, the depth of
the network is essential for the performance of super resolution, so
we choose a Residual in Residual (RIR) [18] backbone as our feature
extractor.

The details of the extractor architecture is illustrated in Figure 8. A
basic Residual Block is consist of two convolution layers with a skip
connection. The RIR architecture stacks these blocks by adding sev-
eral short skip connection and a long skip connection. These skip
connections could help to simplify the task of the layers inside the
connection, which leads to a very deep trainable network. We simply
form the backbone by stacking the Residual Blocks (RB) with short
and long skip connections and have

Fx = Hf(X
l
d) (9)

where Hf denotes the residual feature extractor and Fx denotes the
extracted feature maps.

Note that [18] proposed a Channel Attention (CA) mechanism in the
RBs, but we only utilize the simple stacked RBs for simplicity. As for
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Figure 8: Details of the Residual in Residual feature extractor.

a better performance, we also conducted additional experiments using
CA.

3.4 Multi-scale Warping

In our proposed model, we consider conducting warping at two dif-
ferent scale levels. First is at the low resolution scale level l, and the
other is at the original high-resolution scale level 0. After the feature
extraction part, the extracted features will go through an upsample
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layer

FU = Hu(Fx) (10)

where FU denotes the upsampled features and Hu denotes the upsam-
ple layer. Here we used the Sub-Pixel Convolution Network [3] as the
kernel of the upsample layer.

Then the same as in the low scale level l, the warping operation will
be conducted at the high scale level l = 0 like

R0
w = warp(f0, Re) (11)

Note that here we take Re, which denotes the encoded data before the
downsample encoder, as the under-warping data maps instead of RD

since the extracted features have been upscaled.

Finally, the super-resolved target frame ŷ will be output after going
through the 2-layer decoder D0

ŷ = D0([FU , R
0
w]) (12)

The above is the whole main flow of the proposed network model.
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4 Experiments

In this section, we will talk about the experiments conducted to show
the performance of the proposed model.

4.1 Datasets

We first describe the dataset using in our work. We utilize two video
datasets for training, which are YUV21 [1] and Hollywood II [16].
YUV21 is a popular video dataset and was used in many video super
resolution tasks and all video sequences are in the uncompressed
YUV4MPEG format. Hollywood II is a video dataset that contains
12 classes of human actions and 10 classes of scenes distributed over
3669 video clips and approximately 20.1 hours of video in total. In
our experiments, we used 44 video clips of these two datasets in total
for the training phase and 6 clips from YUV21 as the test set.

For the experiments, we first extracted frames from these videos. For
the purpose of learning large motion in the SR model, we extracted one
frame every two frames and make two adjacent extracted frames as one
frame set. The first frame in the frame set is used as the reference and
the second one is the target. Thus we in total extracted 1174 frame sets
from the training videos and 15 sets from the test videos as training
and test data respectively. For the data augmentation, we conducted 3
types of rotation, i.e., 90◦, 180◦, 270◦, and horizontal flip.

4.2 Experimental Settings

Here we specify the details of the implement setting of the experiments.

4.2.1 Baseline Models

To evaluate the effectiveness of the proposed model, we compared
its performance with two kinds of baseline model. As mentioned in
Section 3.3, we utilized the models in RCAN [18] as our compared
baseline. We introduced a model that simply stacked the Residual
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Blocks as the first baseline. We followed the architecture settings in
[18], i.e., the number of the Residual Group and the Residual Block
are 10 and 20 respectively. We also set the kernel size of the con-
volution layers with 3 × 3 and each layer holds a filter number of
64. Note that this is a single-image super resolution method, and we
validated whether the under-resolved LR frames could recover those
high-frequency details via the proposed model. For a better perfor-
mance, we also exploited the RCAN model that applied a channel
attention mechanism in the Residual Blocks as the second baseline.

4.2.2 Training Settings

The experiments were conducted under the scaling factors of ×2 and
×4 respectively. For the training phase, we set the initial learning rate
with 1× 10−4 and let it decay to the half of itself every 4 epochs. The
batch size N was set to 16, and in each batch, we extracted patches
with the sizes of 96× 96 and 128× 128 for ×2 and ×4 scaling factors
respectively. For the fairness of comparison, we utilized the same
training loss function as the [18], i.e., L1 loss function

L1(θ) =
1

N

N∑
i=1

‖yi − ŷi‖1 (13)

To train the proposed network, we used the ADAM optimizer where
β1 was set to 0.9 and β2 was set to 0.999. We implemented the model
using Pytorch [17].

4.3 Experimental Results

Under the settings above, we trained the models conditioned on the
scaling factors of ×2 and ×4. We evaluated the these models during
the training phase using the test dataset. The averaged PSNR results
on the test dataset are showed in Figure 9 and Figure 10.

Under the scaling of ×2, we trained 2 kinds of baseline models and
their corresponding proposals. Baseline denotes the simply stacked
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Figure 9: PSNR evaluation on the test dataset during training under
the scaling factor of 2. CA here denotes the channel attention used
model.

Residual Block model while Baseline+CA denotes the channel atten-
tion model. As we can observe from the Figure 9, the baselins are
obviously lower than the propsals no matter the channel attention is
used or not. Nevertheless, we still could confirm the effectiveness
of the channel attention mechanism that it led the Baseline and the
Proposal to better performances.

Due to the limit of the storage, we only trained the Baseline and the
Proposal models, where the channel attention was not used, under
the scaling of ×4. The gap between these two models becomes more
obvious as observed. We can see that averaged PSNR of the baseline
is only about 27.6 while the proposed model can reach over 32.
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Figure 10: PSNR evaluation on the test dataset during training under
the scaling factor of 4.

The results indicates the intuitively show the superiority of the pro-
posed reference-based super resolution model.

4.3.1 Quantitative Evaluation

For a more clear evaluation of the proposal, we report the PSNR and
SSIM scores of every test frame in Table 1 and Table 2.

In Table 1, the black bold represents the highest score in the compari-
son while the blue color represents the second one. Consistent with the
averaged evaluation, most of the test frames obtained highest scores
when super-resolved using the Proposal+CA model and obtained the
second when using the Proposal model. However, some of the them
were given the opposite results, i.e., they got higher scores when us-
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ing the baseline models. We will discuss about these results in the
following sections.

Though some results using the baseline moedls showed in Table 1 are
better than the proposals, such kind of results does not appear in the
Table 2. Table 2 reports the quantitative results of the test frames under
the scaling factor of ×4, i.e., the LR frames will have lower resolution
and are more difficult to reconstructed. As observed from the table,
all PSNR scores of the Proposal are higher than that of the baseline.
Similar results are also seen from the SSIM scores except the scores
of stefan9_2, which are not much different.

From the above observations, we can find that our reference-based
model perform better than those non-reference models especially
with very low-resolution LR images. Such discovery is important
for the video super resolution, i.e., we can super-resolve those very
low-resolution frames to decent high resolution ones only using an
additional reference frame.
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Table 1: Quantitative comparison with the baseline models on test
dataset under the scaling factor of x2. CA refers the use of Channel
Attention mechanism proposed in [18]. The black bold represents the
highest score in the comparison while the blue color represents the
second one.

Method Baseline Baseline+CA Proposal Proposal+CA
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

carphone10_4 33.08 0.9599 33.42 0.9633 34.19 0.9660 34.45 0.9674
carphone7_2 33.12 0.9626 33.35 0.9646 34.26 0.9714 34.42 0.9725
carphone7_4 33.83 0.9619 34.60 0.9669 35.01 0.9702 35.31 0.9711
grandma5_2 36.19 0.9509 36.36 0.9525 42.53 0.9865 42.76 0.9871
grandma5_4 35.86 0.9495 35.99 0.9511 41.45 0.9843 41.71 0.9851
miss am4_2 41.50 0.9843 41.73 0.9854 43.96 0.9884 44.01 0.9884
miss am4_4 41.80 0.9844 42.46 0.9867 46.02 0.9899 46.27 0.9903
salesman12_2 31.67 0.9075 31.65 0.9090 40.97 0.9880 41.42 0.9888
salesman12_4 31.59 0.9057 31.52 0.9066 41.74 0.9906 42.13 0.9910
stefan4_2 25.41 0.8594 25.60 0.8675 25.33 0.8580 25.45 0.8613
stefan4_4 25.43 0.8553 25.67 0.8656 25.52 0.8818 27.39 0.9131
stefan9_2 25.84 0.8409 25.97 0.8467 25.32 0.8130 25.61 0.8278
stefan9_4 25.41 0.8371 25.60 0.8456 25.18 0.8216 25.39 0.8323
suzie2_2 38.58 0.9624 38.82 0.9643 39.38 0.9692 39.80 0.9709
suzie2_4 39.95 0.9718 40.09 0.9727 39.78 0.9707 40.07 0.9724
Average 33.28 0.9262 33.52 0.9299 36.04 0.9433 36.41 0.9480
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Table 2: Quantitative comparison with the baseline model on test
dataset under the scaling factor of x4.

Method Baseline Proposal
PSNR SSIM PSNR SSIM

carphone10_4 26.07 0.8174 29.64 0.9102
carphone7_2 26.12 0.8231 28.83 0.9165
carphone7_4 26.35 0.8225 29.81 0.9081
grandma5_2 29.95 0.8359 40.21 0.9796
grandma5_4 29.79 0.8357 39.13 0.9773
miss am4_2 34.20 0.9274 40.22 0.9782
miss am4_4 34.17 0.9273 43.38 0.9833
salesman12_2 26.95 0.7094 37.83 0.9739
salesman12_4 26.93 0.7100 39.31 0.9842
stefan4_2 21.24 0.6043 21.46 0.6315
stefan4_4 21.24 0.6030 25.41 0.8623
stefan9_2 22.26 0.6194 22.32 0.6146
stefan9_4 21.78 0.6050 21.98 0.6194
suzie2_2 33.04 0.8885 35.50 0.9408
suzie2_4 33.88 0.8969 34.82 0.9177
Average 27.60 0.7751 32.66 0.8798
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4.3.2 Visual Evaluation

In addition to the quantitative results, we provide visual evaluations on
the test frames to show the high quality performance of our proposed
model.

Figure 11 shows the visual comparison results under the scaling factor
of ×2. The first row displays the ground truth of the target frames
and rest 3 rows display the LR frames, SR frames super-resolved by
baseline and proposal, respectively.

High performance of the proposed model can be confirmed from the
zoomed patches. We can observe from the patches that the proposed
model recovers more high-frequency details than the baseline. Ob-
serving the forth row of the Figure 11, we can see that the baseline
model failed to reconstruct the stripes of the tie on the man. Though it
recovered some stripe-like appearances in the picture, the direction of
which is wrong compared with the ground truth. In the contrast, the
proposed model successfully recover the stripes. Similar case can be
observed from the fifth row of the Figure 11, where the stripes of the
font are super-resolved by the proposed model. Also in the last row,
the proposal recovers the double-fold eyelid of the woman while the
baseline reconstructs it as a single-edged eyelid.

In spite of the above, there still are some undesirable results of the
proposed model when experimented under the scaling factor of ×2.
Such results are also reported in the quantitative evaluation of Table 1.
The visual evaluations of these test samples are showed in Figure 12.
When paying attention on the zoomed patches of first row, we can
observe that both the ground truth and the baseline result only have
two lines, while an additional blurred line appears under the two lines
in the proposal patch. Similar result could be obseved from the second
row, either. This reason can be inferred from the reference frame,
where there is a line at the same location of the blurred line. This
means that some appearances in the reference, which do not exist in
the target, did not disappear after the super resolution. Since this is a
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test sample that contains a large motion and camera movement, it may
be hard for the proposed model to deal with such large movements.

Next we showed the visual evaluation results of the case under ×4
scaling. Even without the help of the zoomed patches, we can clearly
distinguish the differences between the baseline and the proposal.
We observed that there are obvious artifacts in the baseline results.
This is not surprising since our test frames themselves are difficult
samples, which means it is very hard to conduct super resolution under
such high scaling condition. However, benefit from the reference
frame, the proposed model tackled such problem by referring to the
reference frame. As can be seen from the Figure 13, the proposed
model generated very clear high-resolution results compared to the
baseline.
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LR Baseline ProposalGround Truth

Figure 11: Visual comparison on the test dataset under the scaling
factor of ×2.
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Ground Truth LR Baseline Proposal

Figure 12: Undesirable test results under the scaling factor of ×2.

5 Analysis

In this section, we conducted analysis experiments to further explore
the practicability of the proposed model.

5.1 Video Super-Resolution with Reference

Since the proposed model could well perform even from a very low-
resolution condition, this advantage could contribute to the data reduc-
tion during the video super resolution. Similar to the normal video
compression, we assumed a video compression system using video
super resolution and explored the feasibility of proposed model. Here
we use the reference frame as the I frame and super-resolve the fol-
lowing consistent frames with the proposed model. We proposed two
fashions to conduct the experiment.

1. SR Reference: Super-resolve the first target frame using the
previous high-resolution frame as the reference. Then super-
resolve the following LR frame using the super-resolved frame
as the reference.
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LR Baseline ProposalGround Truth

Figure 13: Visual comparison on the test dataset under the scaling
factor of ×4.
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2. Single Reference: Super-resolve a series of LR frames using
the same high-resolution frame as the reference.

We experiment via the above two fashions to explore the better way to
conduct video super resolution.

5.1.1 Settings

We evaluate the proposed model with the scaling factor of ×4 only.
As the standard comparative value, we conducted additional experi-
ments using the baseline under the scaling factor of ×2 to estimate the
performance of the proposed model. For the comparison, we also ex-
perimented using the baseline under the scaling factor of×4. Different
from the above experiments, where we extracted one frame every two
frames, we extracted a series of consistent frames as for this test. In the
experiment, we utilized two videos from the test data, and extracted
11 consistent frames of each video as the test data.

5.1.2 Results

The experiment results for the quantitative evaluation are reported
in the Table 3. To our observation, the performance of the Single
Reference fashion is better than the SR Reference fashion since the
scores of the former are all higher than the latter. From the table we
can know that those LR frames, which are close to the reference, got
the best scores by super-resolving using the proposed model even
the baseline experimented under the ×2 scaling factor. However, the
results gradually deteriorate as the motion between the LR and the
reference becomes large. In the carphone sample, the PSNR of the
Single Reference results becomes lower than the Baselinex2 after the
sixth frame. In the salesman, though the PSNRs of all Single Reference
are higher than the Baselinex2, the SSIM score becomes lower after
the forth frame.

The visual results of the Single Reference fashion are showed in Fig-
ure 14. The frame at the upper left corner refers to the first frame
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and the frame at the bottom right corner refers to the last frame. We
observed that the frames are gradually blurred. When it comes to the
last frame, the degree of the deterioration becomes quit large. Trough
the visual estimation, for the both videos, we can say that the frames
are well super-resolved until the fifth frame visually.

Since our proposed SR method refers to the reference frame based on
the optical flow between the LR and the reference, the frames before
the reference could also be super-resolved using the reference. Thus
with a single reference, we can obtain about 10 well super-resolved
frames both before and after. From this exploration, we validated the
practicability for the video super resolution.
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Table 3: Quantitative comparison for the two fashions of video super
resolution.

Method Baselinex4 Baselinex2 SR Reference Single Reference
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

carphone_01 27.54 0.8608 35.57 0.9735 41.81 0.9905 41.81 0.9905
carphone_02 27.41 0.8592 35.49 0.9734 36.83 0.9789 37.58 0.9823
carphone_03 27.41 0.8558 35.56 0.9738 34.92 0.9689 37.07 0.9796
carphone_04 27.48 0.8563 35.57 0.9734 34.34 0.9627 36.83 0.9777
carphone_05 27.44 0.8578 35.56 0.9735 32.95 0.9508 36.65 0.9770
carphone_06 27.45 0.8564 35.66 0.9741 32.24 0.9417 35.96 0.9726
carphone_07 27.54 0.8543 35.76 0.9744 31.32 0.9253 33.83 0.9534
carphone_08 27.62 0.8570 35.84 0.9743 30.49 0.9103 32.91 0.9366
carphone_09 27.73 0.8621 36.02 0.9755 30.31 0.9034 33.00 0.9311
carphone_10 27.72 0.8609 35.90 0.9749 30.09 0.8971 32.57 0.9242
Average 27.53 0.8581 35.70 0.9741 33.53 0.9430 35.82 0.9625

salesman_01 26.85 0.7050 31.58 0.9048 37.40 0.9732 37.40 0.9732
salesman_02 26.89 0.7063 31.58 0.9049 34.27 0.9461 34.67 0.9496
salesman_03 26.89 0.7039 31.62 0.9045 32.73 0.9213 33.25 0.9283
salesman_04 26.93 0.7032 31.59 0.9035 32.05 0.9073 32.75 0.9191
salesman_05 26.94 0.7020 31.64 0.9046 31.34 0.8890 32.15 0.9040
salesman_06 27.03 0.7076 31.67 0.9050 30.76 0.8781 32.17 0.9022
salesman_07 27.00 0.7093 31.69 0.9053 30.13 0.8655 31.98 0.8991
salesman_08 27.02 0.7117 31.62 0.9045 29.63 0.8564 31.82 0.8969
salesman_09 27.00 0.7120 31.63 0.9049 29.12 0.8441 31.70 0.8948
salesman_10 27.08 0.7180 31.59 0.9045 28.67 0.8339 31.63 0.8953
Average 26.96 0.7079 31.62 0.9047 31.61 0.8915 32.95 0.9162
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Figure 14: Visual results of the video super resolution with the Single
Reference fashion.
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5.2 Discussion

We first illustrated the averaged PSNR of the test data during the
training procedure. For the ×2 scaling, the proposed models improved
the PSNR scores about 2.7dB from the baselines. We also confirmed
the the effectiveness of the channel attention mechanism, and noticed
that it brought a better improvement on the proposed model than on the
baseline. For the ×4 scaling, proposed model showed its superiority
over the baseline.

In the quantitative comparison, we observed that most of the test
frames had best scores using proposed models, but there still were
some undesirable results under the scaling factor of ×2. From the
visual evaluation we found that the reference sometimes could obstruct
the performance of the super resolution. Several reasons could be
considered:

1. Intense movement of the camera will bring intense visual change,
which leads to a large motion. Large motions may bring diffi-
culty for the optical flow calculation.

2. The performance of the FlowNet may not be good enough.
Since we utilized the FLowNetS, which is a simple one, a poor
performance of the optical flow calculation may restrict the
performance of super resolution.

3. For the simplicity, we utilized a very simple 2-convolution-layer
decoder. With a more powerful decoder, the interference of the
inaccurate optical flow may be able to be avoided.

Finally, we assumed a video compression system and explored the
practicability of the proposed model on video super resolution. In
the experiment, we verified the Single Reference fashion is the better
way to conduct video super resolution. With the both quantitative and
visual estimation, we verified that well super-resolved frames could
be obtained within 5 frames to the reference frame, i.e., 10 well super-
resolved could be obtained. A large degree of deterioration appears
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when the motion becomes large. This may be for the inaccurate optical
flow. We used an upscaled image of the LR frame to calculate the
optical flow through the FlowNet. However, with a high scaling factor
of ×4, the upscaled image will be very vague resulting in a blurred
optical flow map. In spite of this, we still confirmed the feasibility and
effectiveness of the video super resolution.
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6 Conclusion

6.1 Conclusion of the paper

In this paper, we proposed a reference-based super resolution method.
By introducing the optical flow, we successfully made use of the
reference frame in the super resolution.

The proposed model could be divided into three parts. The first is
the optical flow calculation and multi-scale warping, the second is the
resisual feature extraction and the third is the encoding and decoding.
We calculate the multi-scale optical flows via the FlowNet and warp the
multi-scale encoded feature maps with the optical flows. We exploit
the Residual in Residual architecture as the feature extractor to extract
deep features. Finally, with an upsample layer and the decoder, the
super-resolved target frame will be obtained from the output of the
network.

In the experiments, we evaluated the proposed model with both quan-
titative and visual estimation under the scaling factor of ×2 and ×4
respectively. We found that the proposed model has superior perfor-
mance under the very low resolution condition. In the experiment
of the video super resolution, we verified the practicability of the
proposed model.

6.2 Future Works

There are several under-resolved problems of the proposed method.

1. The proposed method still could not well applicable with the
large motions. The following solutions can be considered: 1)
Improve the performance of the FlowNet. Since the FlowNetS
is not the best model to calculate the optical flow and more high
performance models have been proposed, using a better model
may help to obtain more accurate optical flow maps. 2) Improve
the decoder. The same as the above, we used a very simple
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decoder in the network. Since there are many situations that
could lead to the inaccurate optical flows, simple decoder may
not able to recover such error. With a more powerful decoder,
the interference of the inaccurate optical flow may be able to be
avoided.

2. Due to the limitation of storage, we could not train the Pro-
posal+CA model under the scaling factor of ×4. Though the
training speed is not very slow, a lower computation cost means
that we can add additional mechanism to improve the perfor-
mance of the model. Hence we are considering reducing the
computation cost of the model. Here is a solution of using
Depthwise Separable Convolution [4] instead of the convolu-
tion.

3. Improvement of the model. In the comparison experiment under
the scaling factor of ×2, we confirmed the effectiveness of
channel attention mechanism. Hence the attention mechanism
could be considered to improve the model. The channel attention
proposed in [18] is a kind of self-attention mechanism. Since
we have a high-resolution reference frame, a better attention
may be able to improve the model better than the self-attention.

4. Comparison with the existing reference-based SR methods. In
the experiments, we only compared the proposed method with
the baseline method, which is a single image super resolution
method. For a better comparison, we should compare the pro-
posed method with those reference-based methods. However,
with different task settings and implement reasons, we did not
conduct the comparisons. We hope to find a fair way to conduct
the comparison with existing reference-based methods in the
future.
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