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Abstract. For many statistical pattern recognition methods, distribu-
tions of sample vectors are assumed to be normal, and the quadratic
discriminant function derived from the probability density function of
multivariate normal distribution is used for classification. However, the
computational cost is O(n2) for n-dimensional vectors. Moreover, if there
are not enough training sample patterns, covariance matrix can not be
estimated accurately. In the case that the dimensionality is large, these
disadvantages markedly reduce classification performance. In order to
avoid these problems, in this paper, a new approximation method of the
quadratic discriminant function is proposed. This approximation is done
by replacing the values of small eigenvalues by a constant which is esti-
mated by the maximum likelihood estimation. This approximation not
only reduces the computational cost but also improves the classification
accuracy.

1 Introduction

In conventional statistical pattern recognition methods, features are extracted
from objects. The features are expressed in a form of feature vectors, and the
probability density function of distribution of feature vectors is estimated for
each category. An unknown input pattern is assigned to the category with the
maximum probability [1, 2]. The estimation methods of the probability density
function are classified into two types: parametric estimation and nonparametric
estimation.

In parametric density estimation, the forms for the density function is as-
sumed to be known, and parameters of the function are estimated using the
training sample vectors. The multivariate normal distribution is usually used as
the density function. It is because the multivariate normal distribution is easy
to handle and in many cases the distribution of sample vectors can be regarded
as normal if there are enough samples. Mean vector and covariance matrix are
calculated from the vectors. However, if there are not enough training sample
vectors, covariance matrix cannot be estimated accurately. The estimation er-
rors will increase in eigenvalue expansion, especially for the higher dimensions



[3]. Moreover, the computational cost will reach O(n2) for n-dimensional vec-
tors. In the case that the dimensionality is large, these disadvantages markedly
reduce classification performance.

On the other hand, nonparametric density estimation is used without assum-
ing that the forms for the density function is known. Many researchers have tried
to estimate the distribution by nonparametric methods. In many cases, k near-
est neighbor (k-NN) [4, 5] or Parzen kernel-type [6, 7] is used. Fukunaga et al.
estimated the probability density function by using either k-NN or Parzen proce-
dures, and discussed the estimation method of Bayes error [8]. Furthermore, for
dimensional reduction, Buturović used the k-NN estimate of the Bayes error in
transformed low-dimensional space as an optimization criterion for constructing
the linear transformation [9]. Since these methods estimate arbitrary probability
density functions which are not normal distributions, the computation time is
significant and it is difficult to find optimal parameters.

In this paper, we focus on the parametric density estimation using probabil-
ity density function of multivariate normal distribution. In order to avoid the
disadvantages mentioned above, a new approximation method of the quadratic
discriminant function is proposed. This approximation is done by replacing the
values of small eigenvalues by a constant which is estimated by the maximum
likelihood estimation. By applying this approximation, a new discriminant func-
tion, called simplified quadratic discriminant function, is defined. This function
not only reduces the computational cost but also improves the classification
accuracy.

2 Approximation of the Quadratic Discriminant Function

First we give a brief review about the quadratic discriminant function, and then
propose a new approximation method of the function.

2.1 Quadratic Discriminant Function

Let n be the dimension of feature vector. The well-known probability density
function of n-dimensional normal distribution is,

p(x) =
1

(2π)n/2|Σ|1/2
exp

{
−1
2
(x − µ)tΣ−1(x − µ)

}
, (1)

where x is an n-component vector, µ is the mean vector, and Σ is the n × n
covariance matrix. The quadratic discriminant function (QDF) is derived from
Eq.(1) as follows.

g(x) = (x − µ)tΣ−1(x − µ) + log |Σ| (2)

=
n∑

i=1

((x − µ)tφi)
2

λi
+

n∑
i=1

log λi, (3)



where λi is the ith eigenvalue of Σ sorted by descending order, and φi is the
eigenvector that corresponds to λi. This will be the minimum-error-rate classifier
if the distributions are normal, prior probabilities of all categories are equal, and
the parameters µ and Σ are known. However, in general, since the parameters
are unknown, the sample mean vector µ̂ and sample covariance matrix Σ̂ are
used.

ĝ(x) = (x − µ̂)tΣ̂−1(x − µ̂) + log |Σ̂| (4)

=
n∑

i=1

((x − µ̂)tφ̂i)2

λ̂i

+
n∑

i=1

log λ̂i. (5)

Here, λ̂i is the ith eigenvalue of Σ̂ and φ̂i is the eigenvector. It is known that
small eigenvalues in Eq.(5) usually contain many errors that cause the reduc-
tion of recognition accuracy [3]. Moreover, the computational cost of Eq.(5) is
O(n2) for n-dimensional vectors. In the case that n is large, it requires enormous
computational cost.

2.2 Simplified Quadratic Discriminant Function

To avoid the bad influence caused by small eigenvalues and to reduce the com-
putational cost, one considerable solution is replacing small eigenvalues by a
constant. Eq.(5) is approximated by the following function.

gs(x) =
k∑

i=1

((x − µ̂)tφ̂i)2

λ̂i

+
n∑

i=k+1

((x − µ̂)tφ̂i)2

λ

+
k∑

i=1

log λ̂i +
n∑

i=k+1

log λ. (6)

Here, λ is a constant and k ≤ n. Eq.(6) is called simplified quadratic discriminant
function, or SQDF. In the case of k = n, SQDF is the same as QDF.

The value of λ is determined by the maximum likelihood estimation. For
simplicity, the first and third terms of Eq.(6) are fixed, and the second and
fourth terms are considered. In other words, the maximum likelihood estimation
is performed in the (n− k)-dimensional subspace determined by {φ̂k+1, ..., φ̂n}.
Replacing small eigenvalues with λ means that the variance on each axis in this
subspace is assumed to be λ. We define

y = (yk+1, ..., yn), (7)

where
yi = (x − µ̂)tφ̂i. (8)

Since the variance of yi is assumed to be λ, the probability density function of
y is,

p(y) =
1

(2πλ)(n−k)/2
exp

{
− 1
2λ

n∑
i=k+1

y2
i

}
. (9)



Note that yi and y are random variables. Let m be the number of samples and
yij (1 ≤ j ≤ m) be the jth observation value of yi. Likelihood of λ is

L =
1

(2πλ)(n−k)m/2
exp


− 1

2λ

n∑
i=k+1

m∑
j=1

y2
ij


 . (10)

Solving the equation
∂

∂λ
logL = 0,

we get

λ =
1

n − k

n∑
i=k+1

1
m

m∑
j=1

y2
ij (11)

=
1

n − k

n∑
i=k+1

λ̂i. (12)

In other words, λ is the mean value of λ̂i (i = k +1, ..., n). Since trΣ̂ =
∑n

i=1 λ̂i

and ‖x − µ̂‖ =
∑n

i=1((x − µ̂)tφ̂i)
2, Eq.(6) can be rewritten as,

gs(x) =
k∑

i=1

(λ − λ̂i)((x − µ̂)tφ̂i)
2

λλ̂i

+
‖x − µ̂‖2

λ

+
k∑

i=1

log λ̂i + (n − k) log λ, (13)

where

λ =
trΣ̂ − ∑k

i=1 λ̂i

n − k
, (14)

which can be calculated with k eigenvectors and k eigenvalues. Comparing with
Eq.(5), the computational cost of Eq.(13) is reduced from O(n2) to O(nk).

Next, we investigate the form for the density function of Eq.(3) and Eq.(6).
The first term of Eq.(3), and the first and second terms of Eq.(6) are only
considered, because the other terms are just the normalizing terms. Let e1, e2,
e3 be the expected values of the first term of Eq.(3), the first term of Eq.(6), and
the second term of Eq.(6), respectively. For simplicity, the case that there are
enough samples is considered. Since (x−µ)tφi/

√
λi follows normal distribution

N(0, 1), the first term of Eq.(3) will follow χ2 distribution with n degrees of
freedom. Then,

e1 = n.

In the case that there are enough samples, the first term of Eq.(6) will follow χ2

distribution with k degrees of freedom,

e2 = k.



Since λ̂i represents the variance of the component projection onto the vector φ̂i,
and the expected value of ((x − µ̂)tφ̂i)

2 is λ̂i. Then the expected value of the
second term of Eq.(6) is

e3 =
n∑

i=k+1

λ̂i

λ
.

Substituting Eq.(12),
e3 = n − k,

is obtained. Therefore we get

e1 = e2 + e3,

namely, the expectation values of the two expressions are equal. This means
Eq.(6) gives a good approximation of Eq.(3).

As related approaches, quasi-Mahalanobis distance (QMD) [10] and modi-
fied Mahalanobis distance (MMD) [11] have been proposed. The QMD neglects
the third and fourth terms of Eq.(6) and replaces λ by λ̂k+1. The MMD only
uses the first term of Eq.(6), and instead of λ̂i, λ̂i + b is employed, where b is
a bias determined experimentally. The modified quadratic discriminant function
(MQDF) [12] is derived from the Bayesian estimation of the covariance matrix,
and λ̂i of the first and third terms of Eq.(6) is replaced by λ̂i + λ. The value
of λ is determined experimentally. All of these methods have been proposed to
improve recognition accuracy but not to approximate the quadratic discriminant
function. SQDF is an approximation of the quadratic discriminant function, and
can describe the form of the distribution. Moreover, since SQDF is derived from
the maximum likelihood estimation, it is not only appropriate as a classifier, but
it also can be used for model complexity identification with information crite-
rion such as Akaike’s Information Criterion (AIC) [13] or Minimum Description
Length (MDL) [14].

2.3 Model Identification

In SQDF, the only parameter that is not determined is k, that is, the number
of reliable eigenvalues. The other parameters are calculated automatically with
samples. Of course, k can be chosen arbitrarily or experimentally. In recognition
systems which handle large number of categories with high dimensional vectors,
small value of k should be chosen in order to limit the computational cost.

However, if we attach greater importance to the form of distribution, the
value of k can be determined by information criterion. This is a kind of model
identification. Let the numbers of parameters of mean vector, eigenvalues and
eigenvectors be N1, N2 and N3, respectively. Since mean vector is n-dimensional,
N1 = n. Since the number of eigenvalues is k + 1 (k < n) or k (k = n), N2 =
min(k + 1, n). The number of parameters of eigenvectors is,

N3 = (n − 1) + (n − 2) + ...+ (n − k) =
2kn − k2 − k

2
. (15)



Total number of parameters of SQDF is

N1 + N2 + N3 =
(2n − k)(k + 1) + 2min(k + 1, n)

2
. (16)

Let xj be a sample (j = 1, 2, ...,m). The AIC is written as,

AIC = 2
m∑

j=1

gs(xj) + (2n − k)(k + 1) + 2min(k + 1, n), (17)

while the MDL is written as,

MDL =
m∑

j=1

gs(xj) +
(2n − k)(k + 1) + 2min(k + 1, n)

4
logm. (18)

The value of k is determined to minimize the criterion AIC or MDL.

3 Experiments

In order to confirm the effectiveness of SQDF, three types of experiments are
carried out.

3.1 Effectiveness as a Classifier

The first experiment is done to confirm the effectiveness of SQDF as a classifier.
Character recognition is performed using character images included in the NIST
Special Database 19 [15]. The database includes over 800000 handprinted digit
and alphabetic character images. Digit character images of ‘0’ and ‘1’ are used
in the experiment. The numbers of samples of ‘0’ and ‘1’ are both 40000. As
the feature vector, the improved directional element feature [16] is used. This
feature is 196-dimensional vector.

For each category, m images out of the first 10000 images are used as train-
ing sample data, and the next 10000 images are used for evaluation. From the
training sample data, feature vectors are extracted, and mean vectors and co-
variance matrices are calculated. Then SQDF and QDF are used as discriminant
functions. The results are shown in Fig.1. Fig.1(a) shows error rates of various di-
mensionality k of SQDF. The number of training samples is fixed to m = 10000.
Here, the case of k = 196 of SQDF equals to QDF. From the figure, the error
rate of SQDF in the case of k = 30 is much smaller than the case of k = 196, that
is the result of QDF. Fig.1(b) shows error rates of various number of training
samples. The dimensionality is fixed to k = 30. These results show that SQDF is
much more effective than QDF if the number of samples is small. In the case of
m < 2000, the error rates of QDF becomes extremely large, however, the error
rate of SQDF changes little.

All of these results clarifies that SQDF not only reduces the computational
time but also improves classification accuracy. It is especially effective in the
case of small number of training samples.
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Fig. 1. Results of character recognition. (a) Error rates of various dimensionality. m =
10000. (b) Error rates of various number of samples. k = 30.

3.2 Validity of Approximation

Next, in order to confirm the validity of approximation, experiment using arti-
ficial data is carried out. Since Eq.(6) is supposed to approximate Eq.(3), it is
required that the difference between Eq.(3) and Eq.(6) should be small.

Suppose µ0 is an n-dimensional vector, and Σ0 is an appropriate n×n covari-
ance matrix. Here, we use the mean vector and the covariance matrix which are
calculated with 10000 character images of ‘0’ in Section 3.1. Since the improved
directional element feature is adopted, n = 196. By producing random numbers,
m training vectors that follow n-dimensional normal distribution N(µ0, Σ0) are
produced. The sample covariance matrix Σ̂ and sample mean vector µ̂ are cal-
culated with m training vectors. Other 10000 vectors that follow N(µ0, Σ0) are
randomly obtained to be evaluation vectors. The value of Eq.(6) (SQDF) of each
evaluation vector is computed with µ̂ and Σ̂. Suppose the value gtrue obtained
by Eq.(3) with Σ0 and µ0 is the true value of QDF. The error e is given as
e = |(gs − gtrue)/gtrue |. The average of e of evaluation vectors is calculated. The
error of QDF is calculated in the same manner.

Fig.2 shows the errors of SQDF and QDF computed with various m. Note
that QDF can be calculated only if m ≥ n, however, SQDF can be calculated
even in the case of m < n if k ≤ m. In all cases, the larger m, the more similar
the estimated value to the true value. In the case that the number of training
samples is small, the error of SQDF is smaller than that of QDF. In the case
of m = 1000, that means the number of samples is about five times larger than
the dimensionality, the error of SQDF becomes slightly larger than that of QDF.
However, the big difference of computational time between SQDF and QDF still
offers the attraction of SQDF.
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3.3 Validity of Model Identification Method

The third experiment is carried out to confirm the validity of model identification
method described in Section 2.3. Suppose Σ1 is an appropriate n×n covariance
matrix, and µ1 is an n-dimensional mean vector. Here, we consider the following
diagonal matrix and vector.

Σ1 = diag(1, 1, 1, ..., 1︸ ︷︷ ︸
n/2

, 2, 3, 4, ..., n/2 + 1︸ ︷︷ ︸
n/2

), (19)

µ1 = (0, 0, ..., 0)t. (20)

Σ1 consists of n/2 components those values are 1 and n/2 components those val-
ues are larger than 1. Because Σ1 is a diagonal matrix, each diagonal component
corresponds to eigenvalue. In this section, the dimensionality is n = 16.

m training vectors that follow n-dimensional normal distribution N(µ1, Σ1)
are produced in the same manner as described in Section 3.2. The sample co-
variance matrix Σ̂ and sample mean vector µ̂ are calculated with the training
vectors. Then the value of k is determined by AIC or MDL as described in
Section 2.3. In this case, the number of small eigenvalues that are regarded as
constant is n/2. Since SQDF regards k small eigenvalues as constant, the value
of k is expected to be determined that k = n/2.

Figs.3(a) and (b) show the values of AIC (Eq.(17)) and MDL (Eq.(18)) in
the case of m = 10000, respectively. Both kinds of criterion become small if
k ≥ 8(= n/2). MDL becomes smallest when the value of k is 8(= n/2). while
AIC becomes smallest when the value of k is 10. Fig.3(c) shows the relationship
between the number of samples m and the selected value of k. These results
show an appropriate value can be selected by MDL.
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Fig. 3. Model identification by AIC and MDL. (a) The values of AIC in the case of m =
10000. (b) The values of MDL in the case of m = 10000. (c) Selected dimensionality
by AIC and MDL.

4 Conclusions

In this paper, we have focused on the parametric density estimation using prob-
ability density function of multivariate normal distribution. In order to avoid the
disadvantages of the quadratic discriminant function, we have proposed a new
approximation method of the quadratic discriminant function. This approxima-
tion is done by replacing the values of small eigenvalues by a constant which is
estimated by the maximum likelihood estimation. By applying this approxima-
tion, a new discriminant function, simplified quadratic discriminant function, or
SQDF, has been defined. This function not only reduces the computational cost
but also improves the classification accuracy.

In order to clarify the effectiveness of SQDF, three types of experiments have
been carried out. Experimental results of classification using character images



have clarified that SQDF not only reduces the computational time but also im-
proves classification accuracy. The second experiment has displayed that SQDF
gives a good approximation of QDF. The third experimental results have shown
that the parameter of SQDF can be determined by information criterion.

Applying SQDF to various pattern recognition problems is a future work.
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