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SUMMARY

During the late few years, research in recognition of handwritten Chinese and
Japanese characters has matured significantly. However, in order to obtain high
recognition rate, most character recognition systems have paid extremely expen-
sive computational cost. For high performance character recognition systems,
how to reduce the expensive computational cost is a very important problem
now. Discriminant function is a very important factor for precise pattern recog-
nition. The Mahalanobis distance is considered as an effective function. How-
ever, to calculate the Mahalanobis distance precisely, extremely large number
of training samples are needed. In this paper, by investigating the relationship
of elements of feature vector, a new discriminant function, called vector-divided
Mahalanobis distance, is proposed. With the proposed method, high recogni-
tion performance can be obtained with less computational cost. Because the
proposed method partitions high dimensional feature vector into several small
number dimensional vectors, the ratio of the number of training samples to the
number of dimensions becomes larger. This method is especially effect in the
case of lack of training samples. The effectiveness of the proposed method is
shown by the experimental results with the database ETL9B.

Keywords: character recognition, Mahalanobis distance, feature vector,
ETL9B, vector-divided Mahalanobis distance.
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1 Introduction

During the late few years, research in recognition of handwritten characters with database
ETL9B[1], which is the largest public handwritten character database in Japan, has ma-
tured significantly[2, 3, 4]. More recently, Sun et al. have developed a handwritten character
recognition system by using Modified Mahalanobis distance, and the average recognition
rate is 98.24%[5]. Wakabayashi et al. obtain the high recognition rate of 99.05% using
compression of higher dimensional features[3]. Suzuki et al. have proposed the image
transformation method based on partial inclination detection (TPID)[4]. The recognition
rate of 99.08% has been obtained. However, in order to obtain high recognition rates,
most character recognition systems have paid expensive computational cost. For high per-
formance character recognition systems, how to reduce the expensive computational cost
becomes a very important problem now.

Effective discriminant function is a very important factor for precise pattern recogni-
tion system. There are a few well-known discriminant functions, such as the Euclidean
distance, weighted Euclidean distance, city block distance, and the Mahalanobis distance.
The Mahalanobis distance is derived by a probability density function of multivariate nor-
mal distribution, and so it is considered as an appropriate function if the distribution of
samples is multivariate normal and sample patterns are enough. However, compared with
the number of dimensions, the training samples are always not enough. For this reason,
covariance matrix usually cannot be estimated accurately.

In the case of Chinese and Japanese character recognition, the number of dimensions
of feature vectors are usually very large. The Improved Directional Element Feature[5]
has 196 dimensions. The number dimensions of Weighted Direction Code Histogram[3] is
392, and that of Extended Peripheral Direction Contributivity[6, 7] is 1536. In the case
of using high dimensional feature vectors, since there are not enough training samples
usually, the estimation error will increase in eigenvalue expansion, especially in higher
dimensions. Furthermore, there are other disadvantages of the Mahalanobis distance such
as the computation time will reach O(n2) for n-dimensional feature vectors. The former
problem is much more serious. From our simulation results, if the difference between
computed Mahalanobis distance and true Mahalanobis distance is expected to be limited
under 10%, the ratio of the number of samples to the number of dimensions must be greater
than ten. That means if the number of dimensions is 1536, for one kind of character, over
15000 training samples are necessary. Since there are 2965 kinds of characters are included
in the 1st JIS, forty-five million of training samples are needed. It is an impossible number
to gather.

To resolve the above problems, some revisions of the Mahalanobis distance are pro-
posed, such as Quasi-Mahalanobis distance (QMD)[10] and Modified Mahalanobis distance
(MMD)[2]. Modified Quadratic Discriminant Function (MQDF) is also known that it can
avoid the bad influence caused by a finite number of samples, and it can save the compu-
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tation time by using a constant value instead of eigenvalues of higher dimensions[3].
In this paper, a new approach is considered. In order to approximate the Mahalanobis dis-

tance efficiently, a new discriminant function, called vector-divided Mahalanobis distance,
is proposed. With the proposed method, high recognition performance can be obtained
with less computational cost. Because the proposed method partitions 196-dimensional
feature vector into several small number dimensional vectors, the ratio of the number of
training samples to the number of dimensions becomes larger. Moreover, the computation
time is reduced inverse proportion with division number. A method of dimension compres-
sion is proposed in [11]. However, the aim of the method is only to reduce computation
time for recognition. The aim of our method is not only to reduce computational cost,
but also to approximate the Mahalanobis distance without changing the original feature
vectors. In order to achieve our aim, properties of covariance matrix are investigated. The
validity of partitioning the covariance matrix is considered. Moreover, in order to suit the
division of covariance matrix, component exchange algorithm is proposed. Experiments
with the database ETL9B are done to show the effectiveness of the proposed method. In
this paper, the Improved Directional Element Feature[5] with 196 dimensions is used to be
the feature vector.

2 Feature Vector and Discriminant Function

2.1 Improved Directional Element Feature

The Improved Directional Element Feature[5] is used as the feature vector in this paper. It
is calculated as follows. As shown in Fig. 1, first an input image is normalized to 64 × 64
dots, and the contour of the image is extracted. Next, orientation, which is one of vertical,
horizontal, and two oblique lines slanted at ±45◦, is assigned for each pixel. Then the
image is divided into 49 sub-areas of 16 × 16 dots where each sub-area overlaps eight dots
with the adjacent sub-area. (For example, meshed area of Fig. 1(d).) For each sub-area, a
four-dimensional vector is defined to represent the quantities of the four orientations. Thus
the total vector for one character has 196 (= 4 × 49) dimensions.

2.2 Definition of Modified Mahalanobis Distance

Let n be the number of dimensions of the feature vector, in the case of the Improved
Directional Element Feature, n = 196. µ and Σ denote the mean vector and the n by n
covariance matrix, respectively. The squared Mahalanobis distance of vector x is defined
as

d2(x) = (x − µ)tΣ−1(x − µ). (1)

The squared Mahalanobis distance is abbreviated as Mahalanobis distance below.
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Figure 1: Improved directional element feature.
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Figure 2: 49 sub-areas.

Let λk be the k-th eigenvalue of Σ sorted by descending order, and φk be the eigenvector
that corresponds to λk. If y = (y1, y2, ..., yn) is defined as yk = (x−µ)t ·φk, Eq.(1) can be
rewritten as

d2(x) =
n∑

k=1

1

λk
(x − µ, φk)

2. (2)

In the case of using the Mahalanobis distance, since there are not enough training samples
usually, the covariance matrix cannot be calculated accurately. The estimation errors will
increase in eigenvalue expansion, especially in the higher dimensions. In order to avoid
this problem, the Modified Mahalanobis distance[5] is proposed as a discriminant function
that can approximate the Mahalanobis distance by using small number m (m < n) of
dimensions.

Here, Eq.(2) can be approximated as

d2
M (x) =

m∑
k=1

1

λk + b
(x − µ, φk)

2. (3)

In Eq.(3), instead of λk in Eq.(2), λk + b is employed, where b is a bias. d2
M (x) is called

Modified Mahalanobis distance, or MMD. The bias is introduced to decrease the errors in
eigenvalues caused by limited number of samples. According to the experimental results of
the ETL9B, the MMD has shown quite good performance[2, 4]. However, because 150 of
dimensions are necessary, the computational cost of the MMD is still very expensive.
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Figure 3: Mean covariance matrix of all the categories.

3 Division of Feature Vector

3.1 Property of Covariance Matrix

As described above, the Improved Directional Element Feature is produced by counting the
number of each four directions in every 49 sub-areas. Therefore, it is thought that the same
kind of directional elements of adjoining sub-areas have a high correlation, while elements
of distant sub-areas have a low correlation. Here No.21 ∼ 200 sets of the ETL9B1, are used
to check the relationships among elements of the Improved Directional Element Feature.
First, the covariance matrix of each kind of character included in the ETL9B (3036 kinds
of characters in total) is calculated from the feature vectors of training samples. Then, the
mean covariance matrix Σ0 is computed. Fig.3 has shown the 196× 196 covariance matrix
Σ0. The depth of black shows the absolute value of elements.

As shown in this figure, larger absolute values concentrate near the diagonal of the mean
covariance matrix. Furthermore, the absolute value of covariance of each pair of elements
at interval of 4 or 28 in a row or a column is comparatively large. That means these pairs
of elements have strong correlations2. As shown in Fig.2, four kinds of directional elements
are defined in each sub-area. The number of the same kind of directional element of two
horizontally overlapped sub-areas has an interval of 4, and the number of the same kind of
directional element of two vertically overlapped sub-areas has an interval of 28. Obviously,
the overlapped sub-areas have strong correlations.

3.2 Vector-divided Mahalanobis Distance

Suppose covariance matrix is a block diagonal matrix that only consists of M numbers
of K × K matrices (n = M × K), while the other components are zero. In the other
words, as shown in Eq.(4), suppose Σ1, Σ2, ..., ΣM are K×K square matrices and the other
components are zero.

1These sets are the same sets as the sets used for the experiments in sections 4.1 ∼ 4.3.
2Because covariance matrices are calculated for the Mahalanobis distance, instead of using correlation

matrices, the covariance matrices are used to check degrees of correlation.
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In this case, Eq.(1) can be written as

d2(x) = (x − µ)tΣ−1(x − µ)

=
M∑
i=1

(xi − µi)
tΣ−1

i (xi − µi)

=
M∑
i=1

K∑
k=1

1

λik

(xi − µi, φik)
2, (5)

where xi and µi are K-dimensional vectors constructed by the (K(i − 1) + 1)th ∼ (Ki)th
components of x and µ. λik and φik are the kth eigenvalue and eigenvector of Σi. The com-
putational cost is O(K2M) = O(nK). The cost is reduced to 1/M compared with Eq.(1)
whose cost is O(n2). Here, as the same as the MMD, bias is added to the denominator of
Eq.(5).

d2(x) =
M∑
i=1

K∑
k=1

1

λik + b
(xi − µi, φik)

2. (6)

The method of approximating the original covariance matrix by Eq.(4) is considered.
First, instead of computing the n × n covariance matrix, feature vectors are divided into
M numbers of K-dimensional vectors. Then M numbers of K ×K matrices are computed.
Finally, the approximation of the Mahalanobis distance is calculated using Eq.(6). This
approximated Mahalanobis distance is called vector-divided Mahalanobis distance. By
introducing this approximation, in the case of using the same number of training samples,
the ratio of number of training samples to the number of dimensions becomes M times
lager than using Eq.(1). It means more trustworthy covariance matrix can be expected.

In order to confirm the validity of the vector-divided Mahalanobis distance, simulation
is done. Here, using the covariance matrix Σ0 calculated in section 3.1, training samples
are produced following the n-dimensional normal distribution N(0, Σ0) that is supposed
to be the true distribution. The details of simulation are as follows. First, by producing
random numbers, Nt vectors which has the n-dimensional normal distribution N(0, Σ0) are
obtained to be training vectors. Each vector is separated into M numbers of K-dimensional
vectors. Then, the covariance matrix Σ̂i and the mean vector µ̂i are calculated from the K-
dimensional vectors. Eigenvalues and eigenvectors are computed using the Σ̂i (i = 1, ..., M).
Furthermore, using Σ0, other Ne vectors are randomly obtained to be evaluation vectors.
The vector-divided Mahalanobis distance d2 of each evaluation vector is computed. Suppose
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Figure 4: Result of simulation.

the distance d2
true obtained from (1) with Σ0 is the true value of the Mahalanobis distance.

As it is known the expectation of the Mahalanobis distance will be different if numbers
of training samples and dimensions have changed[13], the values d2 and d2

true of each Ne

numbers of evaluation vectors are normalized to be the distribution of mean 0 and variance
1. The normalized values are denoted as d̃2 and d̃2

true . The error e of d̃2 and d̃2
true is given

as e = |d̃2 − d̃2
true|. The average of e among Ne vectors is calculated.

Fig.4 shows the errors of the two evaluation functions computed by various Nt, with
Ne = 10000 and M = 2, 4, 7. In the same figure, the result calculated by the original
function of the Mahalanobis distance but added bias b into the denominator, namely the
result of the case of M = 1, is also displayed. In the case of Nt < n, because of the small
sample size problem[14], the numbers of eigenvalues and eigenvectors are Nt − 1. Here,
if Nt < n, m = Nt − 1, while if Nt ≥ n, m = n. According to [5], b = 5. As shown in
Fig.4, the errors of the original Mahalanobis distance are smaller if the numbers of training
samples are large. However, if the number of training samples is small, especially if the
number of training samples is smaller than the number of dimensions, the errors of the
vector-divided Mahalanobis distance become smaller than that of the original Mahalanobis
distance. If the number of training samples is 100 ∼ 300, the smallest error rate is obtained
in the case of M = 2.

3.3 Exchange of Covariance Matrix Components

As shown in Fig.3, the covariance matrix calculated from the Improved Directional Element
Feature is quite different from the block diagonal matrix denoted as Eq.(4). Obviously, if
the values of non-diagonal components are not zero, they will cause negative effect. In
order to solve this problem, components of covariance matrix are exchanged to approach
the block diagonal matrix.

As shown in Fig.5, if the ith (1 ≤ i ≤ K) row of a covariance matrix is exchanged with
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Figure 5: Exchange of elements of a covariance matrix.

the jth row (K +1 ≤ j), the ith column and the jth column are exchanged simultaneously.
As shown in Fig.5(a), four regions of the covariance matrix are defined as R1 ∼ R4. The
sum of the absolute values of 1 ∼ K components that belong to the ith row is denoted as
ai. The sum of the absolute values of after the Kth components is denoted as bi. In the
same way, the sum of the absolute values of 1 ∼ K components that belong to the jth row
is denoted as aj . The sum of the absolute values of after the Kth components is denoted
as bj . Here, the components of sii, sjj and sij(= sji) are not included. Denote the sums
of the absolute values of the ith row, the jth row, the ith column and the jth column in
regions R2 and R3 are S2 and S3 before exchanging, S2 and S3 have the same value as

S2 = S3 = aj + bi + sij. (7)

Moreover, denote the same kinds of sums after exchanging as Ŝ2 and Ŝ3. Ŝ2 and Ŝ3 also
have the same value as

Ŝ2 = Ŝ3 = ai + bj + sij, (8)

(See Fig.5(b)). In order to approach the block diagonal matrix shown in Eq.(4), the
condition of Ŝ2 < S2 must be satisfied. From the condition,

ai − bi < aj − bj , (9)
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Figure 6: Exchanged covariance matrices.

is obtained. Moreover, based on property of covariance matrix, sii + sjj ≥ 2sij holds.
Therefore, in the case that

(ai + sii) − (bi + sij) < (aj + sji) − (bj + sjj),

(10)

Eq.(9) holds.
The component exchange algorithm is the following. For each row of the covariance

matrix, difference between the sum of the absolute values of 1 ∼ K components and the
sum of the absolute values after K components are calculated. K numbers of rows with
larger values of difference are moved to 1 ∼ Kth rows. Other rows with smaller values of
difference are placed at after the Kth row. This operation is continued till convergence
or certain number of times of repetition. As a result, the matrix with smaller values of
components in region R2 is obtained. Continuously, the region R4 is considered to be a
new matrix. The above operation is repeated. Obviously, if the division number is M , the
above operation will be repeated M − 1 times.

By introducing the component exchange algorithm, it is possible to make the covariance
matrix closer to the block diagonal matrix. Fig.6 shows the results of exchanged covariance
matrices, where M = 2, 4, 7. Squares drawn by solid lines show the non-zero components
areas. From these results, it is clear that the exchange algorithm changes the original
covariance matrix closer to the block diagonal matrix as shown in Eq.(4).

For every kind of character, the order of elements of feature vector is changed according
to the result of component exchange algorithm. n-dimensional feature vector is partitioned
into M numbers of K-dimensional vectors. The elements of the ith K-dimensional vector
are K(i − 1) + 1 ∼ Ki (i = 1, ..., M). Then M numbers of K ×K covariance matrices are
computed. Eq.(6) is used to be the discriminant function.

4 Recognition Experiment

In order to confirm the effectiveness of the proposed method, recognition experiments are
carried on with the ETL9B. The Improved Directional Element Feature is used as the
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feature vector. The proposed vector-divided Mahalanobis distance is adopted to be the
discriminant function.

In sections 4.1 ∼ 4.3, the results of experiments that use the first 20 sets of the ETL9B as
evaluation samples and the other 180 sets as training samples are described. Here, various
values of bias b are tested. In section 4.4, a large scale experiment is done.

4.1 Number of Divisions

Experiments are carried on to exam the relation between the number of divisions and
recognition rate. In order to reduce computational cost, recognition is divided into two
steps that are rough classification and fine classification. Weighted Euclidean distance
defined as Eq.(11) is used for rough classification. The fine classification objects are the
top ten candidates of an unknown input character. The accumulated recognition rate of
the top ten candidates of rough classification is 99.76%.

d2
w(x) =

n∑
j=1

1

σ2
j

(xj − µj)
2, (11)

where xj and µj are the jth element of x and µ. σ2
j is the variance of the jth element,

and it is calculated from the training samples. σ2
j corresponds to the jth element of the

covariance matrix Σ. Eq.(11) is the case of M = 196 of the proposed method.
For dividing the 196-dimensional feature vector, three kinds of division numbers that are

M = 2, 4, 7 are used. Results are shown in Fig.7.
The horizontal axis of the figure shows the values of bias, while the vertical axis shows

recognition rates. As shown in the figure, as the number of divisions becomes smaller,
the recognition rate becomes higher. The reason of the obtained results is considered that
because the increasing of the number of divisions, more components that are not near the
diagonal are ignored. The highest recognition rate 99.06% is obtained in the case of M = 2
and b = 2.0.
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4.2 Comparison with Conventional Method

In this section, in order to confirm the effect of the proposed method, results of conventional
method that uses the MMD as the discriminant function are obtained to compare with the
results of the proposed method. Here, three kinds of numbers of dimensions are tested.
The first one is 98 which is the number of dimensions that the proposed method gets the
best recognition rate. The second is 150 which is the same number of dimensions used in
[2]. The last kind of number of dimensions is 179, which is the largest calculable number
of eigenvectors in the case of using 180 training samples. For the conventional method,
Eq.(11) is also adopted for the rough classification as described in section 4.1. Recognition
results are shown in Fig.8. In the case of m = 98, compared with the result of the MMD,
the recognition rate of the proposed method is much higher. From these results, it is
thought popularly used methods those disregard higher dimensions have lost important
information for classification. Although the proposed method ignores those components
that are distant from the diagonal of covariance matrix, the bad influence is not as serious
as those caused by disregarding higher dimensions. For the MMD, the best recognition
rate of 99.03% is gained in the case of m = 179, b = 4.0. However, it does not exceed the
best result of the proposed method.

Moreover, as shown in Fig.7 and Fig.8, if the number of dimensions of divided vector
becomes smaller, the value of bias corresponding to the peak of recognition rate becomes
smaller, too. Originally, the bias is introduced to reduce the negative influence caused
by errors included in eigenvalues. If the value of bias becomes smaller, it is thought that
the eigenvalues are comparatively accurate. Because the proposed method partitions the
196-dimensional feature vector into several small number of dimensional vectors, compared
with the number of dimensions of divided vector, the number of training samples relatively
becomes larger. For this reason, the covariance matrix calculated by the proposed method is
much more reliable. However, if the number of division is too large, more components that
are not near the diagonal of covariance matrix are ignored. As a result, useful information
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is lost. In our experiments conditions, the optimum number of divisions is two.

4.3 Computational Cost

As described in section 3.1, the proposed method has reduced the computation time and
memory to 1/M of the Mahalanobis distance. The computational cost and recognition rate
of the proposed method and the conventional method are shown in Fig.9. The numbers
of divisions of the proposed method and the numbers of dimensions of the conventional
method are also shown in the figure. The values of bias are selected to obtain the best
recognition rate. As shown in the figure, in order to get the same level of recognition ability,
the memory cost of the proposed method is much less than the conventional method.

For practical recognition system, available memory is limited. By using the proposed
method, it is possible to construct a recognition system with little cost of memory.

4.4 Experiment with all sets of ETL9B

In order to verify the performance of the proposed method, experiments are carried out
with all sets of the ETL9B. In these experiments, rough classification is not performed.
Every twenty sets out of the 200 sets of the ETL9B is considered as a group, which makes
ten groups in total, named Group A through J. In rotation, nine groups are used as the
training data, and the excepted one group is employed as test data. Based on the results
obtained in sections 4.1 and 4.2, parameters that give the best performance are selected.
For the conventional method MMD, the number of dimensions is 179, and bias b is 4.0.
For the proposed method, the number of divisions is 2, and the bias b is 2.0. The proposed
algorithm is implemented in C language on HP C160. The recognition rates are shown in
Table 1. Two kinds of average processing time are displayed in Table 2. From these tables,
it is shown that the proposed method gives a very satisfactory performance with very low
computational cost.
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Table 1: Recognition rates.
Group Conventional Proposed

A 99.10% 99.10%
B 98.63% 98.67%
C 98.96% 98.95%
D 98.63% 98.73%
E 98.72% 98.72%
F 98.51% 98.57%
G 98.46% 98.47%
H 98.60% 98.67%
I 98.53% 98.49%
J 98.50% 98.53%

Average 98.66% 98.69%

Table 2: Time for recognition.

Method
Average processing time

Pre-processing and feature extraction Classification
Conventional 0.006 sec/character 3.72 sec/character

Proposed 0.006 sec/character 2.04 sec/character

As shown in Table 1, the recognition rates of Group A of both the conventional method
and the proposed method are higher than the result of Group A of rough classification (See
sections 4.1 and 4.2). Although the accumulated recognition rate of top ten candidates of
rough classification is extremely high as 99.76%, some correct answers missed by the rough
classification are selected by the proposed method. It proves that the proposed method
has a very high recognition ability.

5 Conclusions

In this paper, by investigating correlation of elements of feature vector, the vector-divided
Mahalanobis distance is proposed. A new character recognition method is developed based
on the vector-divided Mahalanobis distance. First, the covariance matrix is calculated from
the feature vectors used for character recognition. By examining the characteristic of the
relationship of elements of feature vector, the original Mahalanobis distance is considered
that it can be computed approximately from divided vectors. The effect of this idea is
evidenced by simulation. Moreover, in order to suit the division of covariance matrix,
component exchange algorithm is proposed. The effectiveness of the proposed method is
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shown by the experimental results with the database ETL9B. The results have proved that
the vector-divided Mahalanobis distance gives very good performance especially in the case
of small number of training samples, and its computational cost is reduced drastically.

In this paper, the effectiveness of the proposed method is confirmed by the feature
vectors extracted from characters. The proposed method can be used in any cases of
limited training samples. To investigate the effectiveness of this method in the case of
using other feature vectors is a future work. Also it is important to estimate the proposed
method with much more variety of handwritten documents.
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