
⌒

Master of Ettgineering Thesis

Parallel Processing Architecture

for Linear Programming

Department of Electrical and Communication

EngineeritrB,

Graduate School of Engineering,

Tohoku lJniversity,

Sendai, JAPAI\

Shinhaeng LEE

Contents

Chapter L Introduction L

1.1 Background 1

L.2 Purpose of This Thesis 7

1.3 Organization of This Thesis 8

Chapter 2 Linear Programming I
2.L Introduction. I
2.2 Standard-form Linear Programming . 10

2.3 An Example of a Problem 11

2.4 Several Different Solving Methods L2

2.5 Revised Simplex Method 16

2.5.1 Computational Steps 16

2lChapter 3 Systolic Arrays
3.1 Introduction. 2L

3.2 Space-time Mapping 22

3.2.I Models for VLSI Arrays and Algorithms 22

3.2.2 Mapping Algorithms into VLSI Arrays 24

3.3 Optimum Transformation Matrix 25

3.3.1 Conditions for Optimum Transformation Matrix . 26

3.3.2 Cost Function for Optimum Transformation Matrix 27

Contents

Chapter 4 Parallel Processing Architecture for Linear Programming 31

4.I Introduction 31

4.2 Simple Architecture for Parallel Processing 32

4.2.L Systolic Array of Step 8 32

4.2.2 Systolic Arrays for the Revised Simplex Method 35

4.2.3 Systolic Array for Parallelism Improvement . 44

4.3 Architecture for Large Scale Linear Programming 45

4.3.L Modified Systolic Array for Large Scale Linear Program*iog 47

4.3.2 Distributing Data of Problems to Chips . . 50

4.3.3 Simulation of Cell 3 and the Unified Cell 52

Chapter 5 Concluding Remarks 57

5.1 Conclusion . 57

5.2 Further Works . 58

Acknowledgments

Works

59

62

tist of Figures

Functional structure of pipeline computer.

Functional structure of SIMD array processor.

Functional structure of MIMD multiprocessor system.

The systolic array for the matrix product.

2.L Graphical method of example 2.1.

2.2 Fundamental difference between simplex and interior-point method.

3.l ALrrajy with 8-neighbor connections.

4.L The cells of the four mappable matrices.

4.2 The systolic array of Ta. ,35
4.g The structure of cell of ?a. '.. 36

4.4 The structure of array and the cell of step 1. . '.. ... 37

,,. 4.5 The structure of array and the cell of step 2' . . ' ' ...38
4.6 The structure of a,rray and the cell of step 4. ' . 39

4.7 The structure of a,rray and the cell of step 8. 40

4.8 The systolic array for revised simplo< method in the case of m:3, n = 9. 4L

4.9 The structure of the unified cell.'.43
4.10 Efrcient usage of an a,rray of the revised simplex method. 45

4.11 Three patterns of the switching network' '... 46

4.12 Pipeline diagra"rn of application of the a,rray' , - 46

4.13 The modified a.rchitecture which consists of tbree chips. . . . ' . . 48

4.14 The connections of chips. . . . 49

1.1

L.2

1.3

L.4

3

4

o

6

t4

15

23

34

lV

LIST OF FIGURES

4。 15

4.16

4。 17

The example of data distribution in the case of s - 3.

The timing wave of cell 3.

The timing wave of the unified cell.

51

54

54

List of Tables

4,L

4.2

4.3

4.4

4.5

2.L The computation result of example 2.1. . 20

The best results of an evaluation of the dependence matrix of step 8. 33

The values for the constant parameters in the cost functions. 33

Comparison of sequential computation with computation using systolic array. 44

The relationship of control signals to function of Chip A; '*' is the Don't

care signal. 47

The number of chips that are required to solve an rn x n size linear pro-

gramming problem. 50

4.6 The specification of behavioral models of cell 3. 52

'4.7 The specification of behavioral models of the unified cell. 53

4.8 The result of automatic synthesis for cell 3. . 55

4.9 The result of automatic synthesis for the unified cell. 55

4.L0 The nurnber of cells that are implemented in a chip. 55

4.LL The computation time of each module in the case that the frequency of

operation of the cells is l MHz.

Vl

Chapter 1-

Introduction

L.1- Background

Over the past four decades the computer industry has experienced four generations of

development [18]:

. Relays and vacuum tubes (1940 - 1950s)

. Discrete diodes and transistors (1950 - 1960s)

o Small- and medium-scale integrated (SSI/MSI) circuits (1960 - 1970s)

. Large- and very-Iarge-scale integrated (LSI/VLSI) devices (1970s and beyond)

Increases in device speed and reliability and reductions in hardware cost and physi-

cal size have greatly enhanced computer performance. However, better devices are not

the sole factor contributing to high performance. A modern computer system is really a

composite of such items as processors, memories, functional units, interconnection net-

works, compilers, operating systems, peripheral devices, comnrunication channels and

database banks. A good computer architecture should master all these disciplines. It is
the revolutionary advances in integrated circuits that have contributed to the significant

improvement of computer performance during the past 50 years.

1.2 Background

From an operating system point of view, computer systems have improved chronolog-

ically in four phases:

o Batch processing

o Multiprogramming

o Time sharing

. Multiprocessing

In these four operating modes, the degree of parallelism increases sharply from phase to

phase. Parallel process'i,ng is an effi.cient form of information processing which emphasizes

the exploitation of concurrent events in the computing process.

Parallel computers are those systems that emphasize parallel processing. Parallel

computers are divided into three architectural configurations:

o Pipeline computers

. Array processors

. Multiprocessor systems

The typical structures of above three parallel computers are depicted in Figure 1.1,

1.2, and 1.3.

A pipeline computer performs overlapped computations to exploit temporal paral-

lel,i,sm. An array processor uses multiple synchronized arithmetic logic units to achieve

spat,ial parallel,i,sm. A multiprocessor system achieves asynchronous paralleli,snz through a

set of interactive processors with shared resources. The rapid progress in the VLSI (Very

Large Scale Integrated) technology has made these approaches possible.

We are interested in high-performance parallel algorithms that can be implemented

directly on low-cost hardware devices. The concept of systolic algorithm is a general

methodology for mapping high-level computations into hardware structures t7] [8]. In

a systolic array, data flows from the computer memory in a rhythmic fashion, passing

through many processing elements before it returns to memory, such as blood circulates

to and from the heart. Figure L.4 is the systolic array for the matrix product C - A x B.

1.2 Background

Scalar Data

Scalar
Processor

Main
Memory

０
０
０
０
０
∩

口
Ｏ
■
０
●
お
∽
口
Ｈ

Scalar

Fetch
〓
０
一
０
』

口
〇
事
０

，
お
∽
口
Ｈ Vector

Fetch
Vector

Processor

Data Signal

Figure 1.1: Functional structure of pipeline computer.

--> Control Signal

1,.2 Background

Processing
Elements

Interconnection network

-

DataSignal

Figure 1.2: Functional structure of SIMD array processor.

Control Signal

1.2 Background

VO channels

Shared
Memo

Processor-memory
Connection

Network

Input-output
Connection

Network

Processor
Intemrpt
Network

P:processor

LM:local memory

Figure 1.3: Functional structure of MIMD multiprocessor system.

1。 2 Background

/
/b331

´́´́´́´

′/ア色 2
bnl

I

, n.rl
DIJr/́

|

アICll

｀

lc31
: /
じ́

´

lb31b22

||:|:〔
:′
′/′

:

|:ilノi:`ン 1́111
iン1三

d31

ĺて〔
´
alルた、

1

c23!

c22 :
c331

c32 /´
´

′
´́

Ⅲ ril c12

aI2
*;i_

f c2r
| |′ /■13

″

a21 ′
′

/

/

Ｘ
　
Ｖ
″
Ｚ

=X

=y
=Z+Xy

Figure 1.4: The systolic array for the matrix product.

L.2 Purpose of This Thesis

L.2 Purpose of This Thesis

In this thesis, we propose an a,rchitecture which can solve any la,rge size linea,r program-

ming problem.

The aim oI li,near programming is to derive an optimum use of resources in industry

and in organizations [] [12] [13]. The purpose is to minirnize the costs in organizations

and in projects.

Linea,r progra;runing is characterized by linear constraints equations and a cost func-

tion. Because the number of equations is usually very la,rge, it takes a lot of computation

time to find a solution tl] 12] t3l. Therefore, special-purposb hardwa,re is sought for high-

speed linear programming [6].

In this thesis, we design special-purpose hardwa,re for high-speed linea.r programming.

Since most special-purpose chips will be made in relatively small quantities, the design

cost must be kept low [5]. Systolic algorithm has several advantages which help reduce

the cost:

r One may design and test only a few different, simple cells, since most of the cells

on the chip are copies of a few basic ones

r Regula,r interconnection implies that the design can be made modula,r and extensi-

ble, so one can design a large chip by combining the designs of small chips

r By pipelining and multiprocessing, one can meet the performance requirement of a

special-purpose chip simply by including many identical cells on the chip.

An enormous number and variety of designs have been developed. For:rral methods for

designing systolic a,rrays have also been developed [9] [10] [11] [17]' One such method is

ttte space-ti,me mapping given by Moldovan [15] [16]. Ia the space-time mapping method,

an algorithm is mapped into a systolic a.rray using data dependences which a,re obtained

from the loop progra,rn of a given algorithm.

Although many kinds of systolic axrays can be generated for a given algorithm using

the space.time rnapping, few a,re optimal [19] [20].

L.3 Organization of This Thesis

In this thesis, we obtain optimal systolic architecture by optimal transformation matrix

which has minimum o,reo, x t'imez.

In practice, the sizes of linear programming problems are not fixed and are very large,

but special-purpose hardware can solve only fixed size linear programming problerns.

Therefore, we have to design an architecture that can solve any large size linear program-

rniog problems.

Cells in systolic arrays are very simple circuits and interconnections between cells

are regular, so circuits are separated into several kinds of chips. If the size of linear

programming problems is large, we can add systolic array chips whose types are the

same. Then we can solve any large size linear programming problems.

Finally, we propose arl architecture which can solve any large size linear programming

problems.

1-.3 Organization of This Thesis

First, we present an overview of linear programming in Chapter 2, followed by a summary

of designing systolic arrays using the space-time mapping in Chapter 3. In Chapter 4, we

propose an architecture for linear programming and the modified architecture which can

solve any large size linear programming. Finally, the concluding remarks are presented in

Chapter 5.

Chapter 2

Linear Programming

2.L Introduction

L'i,near progr&rnming is concerned with problems in which a linear objective function in

terms of decision variables is to be optimized (i.e., either minimized or maximized) while

a set of linear equations, inequalities, and sign restrictions are imposed on the decision

variables as requirements [f] [+]. Linear programming is a quite young and yet very active

branch of applied mathematics lLzl.
The linear programming problem was conceived by G.B.Dantzig around L947 while he

was working as a Mathematical Advisor to the United States Air Force Comptroller on

developing a mechanized planning tool for a deployment, training, and logistical supply

program [13]. The work led to his 1948 publication, "Programming in a Linear Structure."

An effective s,impler method for solving linear programming problems was proposed by

Dantzig in 1949.

Linear programming techniques are extremely useful in many diverse applications such

as [14]:

Agricultural applications

Procurement of contract awards

2.2 Standard-lbrrrl Linear Progranllning

. Economic aids

. Industrial applications

o Military applications

. Personnel assignment

. Production scheduling and inventory control

o Structural design

o Traffic analysis

o Transportation problems and network theory

o Traveling salesman problem

o Statistics, combinatorial analysis and graph theory

. Design of optical filters

2.2 Standard-form Linear Programmittg

In general, a linear progra,mrdng is a problem of minimizing or rnaximizing a linear

objective function with restricted or unrestricted decision variables in the presence of

linea,r equality and/or inequality constraints. Therefore, we convert any general linear

programming problem into stanilaril-tonn.

The standaxd-form of linea,r progra,rrming deals with a linea.r minimizing problem with

nonnegative decision variables and linea,r equality constraints. A eta.ndard-form linear

progralnming problem can be described as the follows:

Minimize
ヽ

１

‐

Ｊ

／

″％

π

Σ

知

〓Ｚ

／
′

‐

‐

ｌ

ヽ

“Ｃ〓Ｚ
(2.1)

10

2.3 An Example of a Problem

SZりCCι ιο

A“ =b(°)

“
 ≧ 0 (″ブ

α″“ブ
=あ

°),

ブ=1,… 。,2)

仁
阪
輌
　
狐

ヽ

１

‐

Ｊ

ノ

ｍ
１

〓 (2.2)

´

ρ

where A is anm x n constraints matrix (m <n), e is the cost vectorwith n elements,

b(o) is called the right-hand-side vector with nz elements, and al is the decision variables

vector with n elements. ct denotes transpose of c.

We search the optimal value of objective function for u such that the objective value

ett is minimum, while the constraints equations As - b(0) and the bound constraints

inequalities r) 0 are satisfied.

2.3 An Example of a Problem

Although linear programming has long proved its merit as an effective model of numerous

applications, still there is no fixed rule of modeling.

Each decision variable is associated with a certain activity of interest, and the value

of a decision variable may represent the level of the associated activity. Once the de-

cision variables are defined, the objective function usually represents the gain or loss of

taking these activities at different levels, and each technological constraint depicts certain

interrelationships among those activities.

To understand linear programming problems, consider the following problem:

EXAMPLE 2.L. (Production Scheduling)

五EE`οηPαπν praJ%ccs ιυο λjπ dし o/6んなSrθんな―ゴαπα働 Ⅲ 2ノ・ コ吼θ Zπづι scJあ 2J P西 6θ

jS∫ ゴルr働なィ αηJ∫ 2ルrCあな-2っ ■,παλθ οπc C乃″‐ゴ′LEE`οηpα ttν んαs tο jπυcstゴ

んο%rぽ SλづJJcα Jαらοr απαゴんο%rげ %η sλづJJCJ Jαbοr.■9 παλc θηc Cあゎ-2づι ιαλcs 2んο%%

げ SλjJJCJ′αbοr απJゴ んο%rげ %π sんづJJθα Jαらοro LEE cοηPαπνんαSィθんο%rS″P Sλ jJJCα Jα bο

"
απごδθんοttrsげ %πsλづJJCJ Jαらοr。 ∬ου 6απ LEE cο ηPαπνごcιθrπ jηθ jお (ηιjttα J praJ鶴

`ι

鶴0″。

2.4 Several Different Solving Methods

This problem is converted to the following form:

Maximize r1! 2r2

Subject to sr * 12 1 4A

2*r+r.2(60

fr1rfi2) 0

However, the standard form of linear programming deals with a linear minimization

problem, then we convert a maximization form into minimization form as that:

Minimize -t1 - 2n2

Subject to nr * 12 I 40

2*t+n2160
fryfr2) A

We convert this problem into standard-form using slack aari,able fi* n4) 0:

Minimize -r1 - 2r2

Subjectto h*nz*ns:40
2q+nz*n+:60
frLtfrztfrgrfra) 0

Although it has four variables, the feasible domain can be represented as a dimensional

graph defined by

nt* nz 14A,,2r1 * rz (60, nr) 0rr2t 0 (2.3)

2.4 Several Different Solving Methods

The fundamental theorem of linear programming shows that one of the extreme points of

the feasible doma'i,n P is an optimal solution to a consistent linear programming problem

unless the problem is unbounded.

There are several ways in solving linear programming problems.

L2

2.5 Several Different Solving Methods

● Glraphical lnethod

● Enumeration lrlethod

● Silnplex rrlethod

● Interior― poittt approach

θ
「呻 んづ

`α

J,ηθιんοα is one of the most intuitive ways of solving a linett progralr― ng

prOblem.First,we draw a graph ofthe feasible domain P by Equation(2.3).Then at each

extreme point υ of P,using the negative cost vector‐ ―ct as the normal vector,we draw

aけper― plane∬ .If P is cont五 ned in the half― space ttL,then″ is a desired supporting

hyper―plane and υ is an optilnal solution. Figure 2.l shows graphical representation of

Example 2.1.

Eπ %鶴 crαιjοπ?ηθιんOα is a straight― forward lnethod. Since an extreme point corresponds

tO a basic feasible solutionフ it lnust be a basic solution.We can generate all basic solutions

by choosing l晒じlinearly independent colurruls from the colurrlIIs of the constraint lnatrix。

Among all basic solutions,we identify feasible ones and take the optimal one as our

sohtbn.It becorrles imprac伍 c」 when thenumber tt becOttS hrgQ

Focusing on inding an optilnal extrelmLe pOint,the sj,η pJθ″ 鶴cιんοJ starts with one

extreme point,hops to a better neighboring extreme point along the boundary,and inally

stops at an optilnal extreme point。]Because the method is well designed,rarely do we

have to visit too many extrerrle points before[肛l optilnal one is found. But in the worst

case,this lnethod may still visit all■ on―optilnal extreme points.

Unlike the silnplex method,the jπιcrづοr"Pοづηι?η ctんοJ stays in the interior of P and

tries to position a current solution as the ``center of universe" in inding a better di―

rection for the next move. By properly choosing step lengths, an optiIIlal solution is

inally achieved after a number ofiterations. This approach takes lnore e■ ort,hence rrlore

computational tilne,in inding a inoving direction than the silnplex lrlethod,but better

moving directions result in fewer iterations. Figure 2.2 shows the fundamental diference

between silnplex lnethod and interior― point approach。

In this thesis,since the simplex method is well suited for hardware implementation[61,

we present parallel architecture for the silnplex lmethod.

13

2,5 Several Different Solving Methods

X2 X-+)X--- 1'. 2-- 2

(0′ 60
H、

、 v
ヽ

(0′ 40

HL ｀
ヽ

(0′ 0) (30′ 0)(40′ 0)

Figure 2.1: Graphicall lnethod of example 2.1。

2Xl+X2=60

-x L-2x 2=- B 0

0′ 20卜 、

Xl+X2=40

〔、、
Hu

Xl

14

2.5 Several Different Solving Methods

x3ethod

Figure 2.2: Fandamental difference between simplex and interior-point method.

Interior-point method

15

2.5 Revised Simplex Method

2。 5]R´evised Simplex Method

For colrlputational ettciency,we focus on the“ υづscJ sづηpJc″ πθιんθ4whiCh iS a procedure

for implementing the steps of the silnplex]nethod in a smaller array.

For silnplicity without loss of generality9ン L,c and“ can be partitioned as

A=二 IB rvl,c== |:il ,"== |III I (2.4)

where 3 is an m× 鶴 ■onsingular matrix,狙 d N isan m× (η 一鶴)m」hiX。

~) An initial solution to lineぱ
progra―ing problem is suplosed tO be k■own as such

that“ is feasible so that it holds:“ b=B~16(°)>0狙 d"π ==0.The lnatrix 3 is ca■ ed

the bαsjs and the Variables“ b associated with 3 are called the bα sj`υαrjαらJθs.

Accordingly the lnatrix Ff is called the 2θ η―みαsづs and the vaFiables"π ==O aSSOciated

with Ff are the ηο2-bα s``υαrjα bJes. The revised silnplex algorithlrl starts frorrl the initial

solution。

In general,the so― called r℃ο」Pんαsc strategy is used. Pん αsc F entt狙ls flnding a basic

feasible solution as the initial solution for」Pんαscりa PんαSθ 2 ent:狙 ls inding the optilnd

solution to the original linear programming probleⅡ l,by stittrting fronl the solution ob―

tained frorrl」 Pんαsc F. The computational steps for both」 Pんαsc F and Pんαsc 2証e the

same, except the data set being worked ono Thereforeフ in this thesis,we cOnsider one

computational step in Section 2.5。 1

に ヽ

2。 5。1 (Computational Steps

ln the following, we suIIInarize the main computational steps for the revised silnplex

algorithm.
・

stepO:Compute 3~l and Ettation(2.5)。

b=B~1ら (°) (2.5)

stepl: Compute the pricing vector,留 リオ.

り`=C:3~1 (2.6)

16

2.5 Revised Simplex Method

step2: Price out the non-basic columns from the non-basis.

r-c-(-'l)r

stepS: If no element of r is negative, then terminate and the

optimal.

r)0->OPTIMAL

Otherwise select an index g such that rn 1 0

The corresponding non-basic variable rn will become basic.

step4: Update the entering column.

d - B-rAq

Here An is the g-th colum:r of matrix A.

(2.7)

currqnt solution is

(2.8)

(2.9)

step5: Check for unboundedness. If no element of. d is positive, then terminate and

this problem is unbounded.

d<0+ UNBOUNDED (2.10)

step6: Select an index p such that

b, h'
+ - d.%,{

;ld',
> o} (2.r1)

de l<i

The leaving basic variable from the basis is corresponding variable to the p-th entry of b.

step7: Compute so-called eta vector, 17.

t -+ i#pld-Tt:l t' .| - z:p
ldo

L

stepS: Perform the pivoting

b-L : B-L + (rt - .o)(B-t)o: B-L + q.(B-t)o

6-b+(rt-"o)br-b+T*bo

(2.12)

(2.13)

17

2.5 Revised Simplex Method

ab=cb+ep(c9-Cb,p)

where cP denotes a vector which has(1'in P― th entry and`0'elsewhere,η *=:η ―ep and

(3~1)p iS the p―th row of B~1.

Therefore,we can modify step 7 as the following

The same sequence of computations starts again from step 1 until the final optimal solution

is found.

To understand in detail, compute Example 2.1 with this procedure.

(2.14)

(2.18)

Step 0

Assume that

A-[; i I :], B-B-'1-l; l],Ar: l; l]
０

　

０

４

　

６降　
　
弾

ｄ

　

　

　

　

　

Ｓ

ｎａ

ノ=卜1-2001,こ =[001,C卜 14-21

(2.15)

(2.16)

(2.17)

″ りι=C:3~1=[001

Step 2

r-c-(-'A)':

-1

-2

0

0

Step 3

1r<-0+Q:I (2。
19)

18

2.5 Revised Simplex Method

(2.20)

StcPィ

d=B-1ノ49=l:l

囲　　　四
　
　
　
囲　　　　囲
　
一
範　　　　囲　　　‐ｕｔｉｏｎ

２
一
一
　

　

　

　

　

　

　

　

　

　

　

「

Ｐ↓
　　　　　　　　　　　　　　　　　　　　　　　　　ｎ

ｌ

　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
Ｆ

６ 〇

一
２

４〇

一
１刺

　
　
　
　
　
　
　
　
　
網

”
　
　
咋
　
　
　
　
Ｆ

Ｄ
　
　
　
　
　
＞

Ｊ
　
　
＞
　
　
δ

　
　
一一　

　

γ
　
　
　
一一　
　
　
∂

叩
　
罰
　

叩

ら
一ら

一Ψ
　

ず

　

叩

膨
　
　
　
　
駒
　
　
　
　
膨
　
　
　
　
　
膨

19

2.5 Revised Simplex Method

″

ρ l

iteration
(″ 1,π 2) objective value

０

　

１

　

２

　

３

(0,0)

(30,0)

(20,20)

(0,40)

0

-30

-60

-80(optimum)

Table 2.1: The computation result of example 2.L.

Therefore, LEE company has to produce only a0 Chip -2 according to the result of

Table 2.1. LEE company benefits $ 80 by this production scheduling.

The characteristics of linear programming problems are linear constraints equations

and a cost function. Since there is usually a very large number of equations, the computa-

tion time required to find a solution is also large. ConsequentlS special-purpose hardware

is sought for high-speed linear programming.

20

/~

ρ

Chapter 3

Syrtolic Arrays

3.1 Introduction

Since costs of parts are less important than design costs, special-purpose design costs

can be reduced by the use of appropriate architecture [5]. In addition, special-purpose

systems based on simple, regular designs are likely to be modular and therefore adjustable

to various performance goals.

The design of a special-purpose system should be modular so that its structure can

be easily adjusted to match a variety af I/O bandwidths.

As a solution to the above special-purpose architecture, we introduce systol'ic arch'i-

tectures, an architectural concept originally proposed for VLSI implementation [8]. The

systolic architectural concept was developed at Carnegie-Mellon university and versions

of systolic processors are being designed and built by several industrial and governmental

organizations [5] I7l t8l.

The concept of systolic architecture is a general methodology for mapping high-tevel

computations into hardware structures. In a systolic system, data flows from the computer

memory in a rhythmic fashion, passing through many processing elements before it returns

to memory, such as blood circuits to and from the heart.

Formal methods of design of systolic arrays have also been developed. One such

21

3.2 Space-time Mapping

method is the space-t'irne rnappi,ng given by Moldovan [15] [16] [17].

3.2 Space-time Mapping

In the space-time mapping methodr &o algorithm is mapped into a systolic array using

data dependences. First, the algorithm is expressed in terms of its dependence matrix and

then, using a transformation matrix, dependence matrix is transformed to a mappable

matrix where the elements of mappable matrix give all the information required for the

array design.

In Section 3.2.1, computational models are introduced for VLSI arrays and algorithms.

The models are used in Section 3.2.2 where we present the mapping of algorithms into

systolic arrays.

3.2.L Models for VI,SI Arrays and Algorithms

We use symbol I to denote the set of non-negative integers and Z to denote the set of all

integers. The nth powers of .[and Z are denoted as In and 2", respectively.

A mesh connected array processor is a (J",P) where Jn (C Z") is the index set of

the array and P is amatrir of i,nterconnection prim'i,tiues.

The matrix of interconnection primitives is

P=レ1,p2,・ …,ら ,… 。,p~sI (3.1)

where fu i" a column vector indicating a unique direction of communication links and s

is the number of kinds of directions of a communication link.

For example, consider the array shown in Figure 3.1. Its model is described as (J'rP)
where

J2={(プ 1,ブ2):0≦ ノ1≦ 2,0≦ ブ2≦ 2}

一
　

一

〇
　
〇

〓Ｐ -1 1 o o 1 -1-l
1 -11-10 ol

(3.2)

(3.3)

3.2 Space-time Mapping

″

Figure 3.1: Array with 8-neighbor connections.

23

3.2 Space-time Mapping

The important information about an algorithm which we want to include in the model

is the data dependences.

The data dependencies can be described as difference vectors of index points where a

variable is used and where that variable was generated. With these dependencies we form

a dependence matri,n D from loop program.

f-1D:ldr d2 aol

where & is the number of kinds of depend.ence vectors.

3.2.2 Mappit g Algorithms into VI,SI Arrays

A transforrnat'i,on matrir ? which transforms an algorithm A into an

defined as:

(3。
4)

algorithmス is

T=II:|=

ιll ι12 サ13 ・°° サlη

ι21 ι22 ι23 ・・・ ι2π

ι■1 サ%2 ιπ3 °°° ιππ

(3.5)

l~l

where t'ime mapping funct'i,onJT and space mappi,ng functions are defined as ff : Jn -, il
and,5 : Jn ->

j(*-t). In this paper, we consider only li,neartransformation matrirTri.e.,
T e Znxn.

Thus, using a transformation matrix T, D is transformed to a mappable matrir A:

ム=TD=|:|い …司

And the index set of algorithm, j" (e J") is mapped into j'. The first coordin ate of in
indicates the time at which the computation indexed by correspondin g j" is computed and

the rest coordinates of j" iodi"ate the processors where that computations are performed.

Since the mapping JZ ensures a valid execution orderin1, T must satisfy the following

condition:

(3。
6)

(3.7)π 島 >0

24

⌒

″ ヽ

3.3 Optimum Transformation Matrix

where each element indicates the number of time units allowed for its respective variable

to travel from the processor where it is generated to processor where it is used.

The mapping S can be selected such that the mappable matrix is mapped into a VLSI

array modeled as (i("-t),P). This can be written as:

SD=P」 【

where s× んInatrix Jr indicates the utilization

し ≧ 0

(3.8)

of primitive interconnections in matrix P.

Σ

ブ
≦」
『

硫

(3.9)

(3。
10)

Equation (3.9) simply requires that all elements of .K matrix are nonnegative and Equa-

tion (3.10) required that conurrunication of data associated with dependence vector J6

must be done using some primitives pj exactly Dl kp times. This flexibility apparently

complicates matters, but in fact, it gives the designer the possibility to choose between a

large number of arrays with different characteristics.

We select one transformation matrix which satisfies Equations (3.7) and (3.8) from

many candidates.

Once a transformation matrix is selected, then the algorithm is mapped into systolic

arrays.

3.3 Optimum Transformation Matrix

The generated matrix A may or may not be the optimum matrix. Then we select the

matrix A that will give the optimal or near-optimal systolic array.

We have found that an advantage of using space-time mapping is that the matrix ^4

can be related to the architectural features of implementation of the matrix A. Therefore,

we do not compare various implementations in a pure abstract terms of area and time, but

extract other information such as routing topology, routing complexity, interconnection

delays, storage requirements, etc., and use this information in the cost function to compare

algorithms.

Z」・

`

25

3.3 0ptilnunl Transformation Matrix

3.3.1 Conditions for Optimum Tlansformation Matrix
Since there a,re a la,rge nurnber of available matrices A for an algorithm, we can reduce

candidates of matrices A by addition of the conditions of matrices.

In the following, we decribe the conditions of rratrix A.

Fault-tolerance

To improve the fault-tolerant capability of the arrag it is degired that all the data

variables in a given algorithm be propagated from one cell to the other and not be stored

/- in the cells.

sai+o

No Delay Elements

We define

T**pt=Dwa,t (3.12)

as a measure of number of delay units required within each processor for synchronization,

where ft is the number of dependence vectore. II T.o pt = ft, there a,re no delay elernents.

As T.o ol becomes much larger than ft, delay units give a slow and bulky architecture.

r-' Interconnection Factor

Each element of. Sd4 indicates the direction of data which travel from the current

processor to another processors. Thus, any
I
Sdil that is greater than 1 is not desirable,

since this indicates absence of nearest-neighbor communication, which is costly in time

and area.

lsdil < 1 (3.13)

This means that the rows of matrix A that represent the space function is fixed from the

set as {-1,0, 1}.

(3.1 1)

26

3.3 0ptilnum Transformation Matrix

Valid Execution Ordering

For valid execution ordering,

rrd,; > 0 (3.14)

Each element indicates the number of time units allowed for its respective variable to

travel from the processor where it is generated to processor where it is used.

Normal Transformation Matrix

Assume that ? is a normal matrix. If T is not a normal matrix, a statement of a pro-

gram needs its own processing element and the other statement needs another processing

element.

det(T) t' 0 (3.15)

In this thesis, we select five conditions for optimizing individual cost function. Then we

were successful in reducing the search space by defining a practical upper limit.

3.3.2 Cost Function for Optimum Tlansformation Matrix

We can define the several cost functions which have si,licon o,re& and throughput factors,

since matrix A have information about implementation. Therefore, we can compare

various arrays of any algorithm without practical data.

Silicon Area

The silicon area A required to implement any given algorithm is obtained by combining

the area of processing elements, the area of delay units and the area required for routing

the interconnection.

Area of Processing Elements

The area of processing elements Apa is given by

27

3.3 Optimum Transformation Matrix

Apa - npn' Kpa
(3.16)

(3。
17)

(3.18)

where KPE is the ttrea of one prOcessor and ηPz is the number of processing ele]田 LentS

required to implement any algorithm.

4“αげ DCJαν D%jι s

h Equatio■ (3.12),λ is the number of columns inム .For example,when mと、≦ 1,乱

least One delay unit is required for data to propagate fronl one cell to anothero Therefore,

the number of delay units in a processor is given by Σ胆l μ7島 -11狙a the tot』 number
/~ of delay units ηD in the array is given by

k

rtD: ftPn D lnd; - 1l
i,=l

Therefore, the total area of the delay units Ao in the array is

Ao: nn' Ko

where Kp is the area of a delay unit.

Area for Rout'ing the Interconnection

The complexity of the interconnection pattern is

k

c - Dtt srdel + zlszc7il)
(3.19)

/~ヽ
i,-_L

where ,51 and ,52 are the first and second row vector of S in the case that the size of S

is2x3.
Therefore, the area required for routing the interconnection lines A7 is given by

An: C 'npp' Kr,

where K r is the area of a unit length of interconnection line.

(3.20)

The silicon area 24 rcquired to implement any given〔 dgorithm is obt〔 五ned by Equations

(3.16),(3.18)狙d(3。 20)。

3.3 Optimum Transformation Matrix

ス =η PE・ ストE+η PE・ Σ lπ島 -11。 Xb+σ ・ηPEo ЙL (3.21)
j=1

The number of processing elelrlents ηPE required to implerrlent an algOrithm in a syst01ic

array can be obtained using the following procedure:

/Or Cα 6ん μノあり
らりjη

ノリ,ブ ,ん =ι21j+ι 22ノ +ι23乃

れ
,ブ ,た =ι31j+ι 32ブ +ι33た

θπJ

bりjη

噂 J2{島 ,ブ ,λ }

ηPE=社
ル=二 {輛

(7Xttj航』 ―
申 僣j執』 +⇒

CπJ

where九
,ブ ,ん ,力を,ブ ,た

are the transformed indices ofブ ,ん and Jl,J2are the sets of夕
`,ブ

,た ,

ん
`,ブ

,た
respectively.

Throughput

The throughput of the systolic array is deined as the number of results that can be

completed by the array per unit tillrle. This can be ineasured by the total number of clock

cycles required to complete the computation of any given algorithm.

The total number of clock cycles(3 required for the computation of the algorith■ ■can

be determined in the following Equation(3.22)。

θ =Tが {:`,ブ
'ん
}_需ォ{:″″,た}+1

=躙 {ιllj+ι12J+ι 13λ}~賢
1オ

{ιllづ +ι 12ブ +ι13た}+1 (3.22)

where ti,■ たis the transformed index ofづ .

29

cost function as Equation (3.25).

/^' AT2 - A, c' . (t" + tn)'

3.3 Optimum Transformation Matrix

Interconnection Line Delay

To minimize the delay required for the data to propagate through the systolic architecture,

it is desired that the routing between the cells be to the nearest neighbors. This means

that the elements in Srda and S2il6 should be as small as possible.

The delay of the interconnection line, assuming the Manhattan geometry, is given by

ι五=彎XД ISプ屁|・
κ」照

where K.Ⅳr iS the delay of an interconnection line with unit length.

(3.23)

Optimization with Respeet to Area - T'ime

One cost function is the product of the silicon area and the total computation time of the

algorithm.

AT - A.C .(t" ah,)

where tc is the operating cycle of processor.

(3.24)

Optimization with Respect to Area - T'ime2

The important factor in this cost function is the computation time factor. We can obtain

(3.25)

We can select one function from two cost functions, Equations (3.24) and (3.25), ac-

cording to our purpose. The computation time factor in Equation (3.25) is more important

than the computation time factor in Equation (3.2a).

30

Chapter 4

,Parallel Processing Architecture
for Linear Programmittg

4.L Introduction

In this chapter, w€ propose the parallel processing architecture for linear programming.

As a parallel processing method, we use systolic architecture and the space-time mappiog

method.

First, in Section 4.2, the architecture for fast parallel processing was designed, which

consists of three modules. In this configuration, we can start computations from three

starting points. Then we can improve parallelism. This architecture can solve fixed size

linear programming problems.

In Section 4.3, the architecture that can solve any large size linear programming was

presented. That architecture consists of three kinds of chips. Then if we add chips which

contain systolic arrays, we can solve any large size linear programming problems.

L 2 Sirnnla Anr.hitarf.rrrp firr Pnrallel Pror:essillpf'

4.2 Simple Architecture for Parallel Processing

4。2.l Systolic Array of Step 8

0ne example will be given tO help the explanation of the space― tilne mapping method.

To use the space― time mapping methOd,■ rst,the algorithm Of step 8(E《 拌ation(2。 13))

is expressed as follows:

ルrλ=ゴ サοκ

ルrづ=Fサοπ

ルrブ=」 ιο鶴 1
(13~1)夕J = (13~1)'ア

1+ (η *)夕~1(17「 1)夕~1

where(ら 1)夕~1=(3~1)夕
71狙d theみ th term of(3~1)`,J iS de■ oted器 (3~1)タノ狙 d

Йris the number of iterations when this computations are inished. Rea■ y,」で==l but for

space― tilllle inapping,indexた is shown explicitly.

The dependence lnatrix is obtained froⅡ l data dependences as follows:

D=

g-t B;t rt*

where columns of. D are corresponding to data in right-hand-side of the assignment state-

ments of nested loop program.

Because there are many possible transformation matrices, we have to choose one trans-

formation matrix among them using the conditions (Section 3.3.1) and the cost function

for optimum transformation matrix (Section 3.3.2). Table 4.1 shows only the best re-

sults of evaluation of dependence matrix of Equation (4.1). This result uses the Northern

Telecom CMOS 3 p,m double metal layer technology [19], which determine the constant

parameters in the cost functions that are shown in Table 4.2.

０

　

０

　

１

０

　

１

　

０

１

　

０

　

０

２

″
　

・
０

　

。
９
″

(4。
1)

r i

32

4.2 Simple Architecture for Parallel Processing

Transformation matrix Area-Time (p,mt .") Area-Tirne2 (p,m' - t')
■

Ъ

■

■

…

6.4051E+01

6.4051E+01

6.4051E+01

6.4051E+01

3。2570E-05

3.2570E-05

3.2570E-05

3.2570E-05

Table 4.1: The best results of an evaluation of the dependence matrix of step 8.

Parameters Values

Area of a processor (Kp")
Area of a delay unit (K o)

Area of a unit length of interconnection line (K
")

Unit length interconnection delay (Kr*r)
Frequency of operation of the processor (/6r)

2.5× 106μ 7)2

5× 104μ 722

4。8× 103μ 732

1。 7η s

10■√∬z

Table 4.2: The values for the constant parameters in the cost functions.

The four transformation matrices are very similar to each other. They are:

Then the mappable matrices are obtained by Equations (4.1) and (a.2).

２４１

１

　

一
　

〇

１

　

１

　

０

１

　

０

　

１

１

　

１

　

０

１

　

一
　

〇

１

　

０

　

１

１

　

一
　

〇

１

　

１

　

０

１

一
．

０

１

　

一
　

〇

１

　

一
　

〇

33

(4。
3)

4。2 Simple Architecture for Parallel Processing

Figure 4.1: The cells of the four mappable matrices.

34

4.2 Simple Architecture for Parallel Processing

B~・ (3′ 3)

B~1(2′ 3)o B~1(3′ 2)

B~・ (1′ 3)o B~・ (2′ 2)o B~・ (3′ 1)

o B~1(1′ 2)O B~・ (2′ ■)0
0 o B~・ (1′ 1)0 0
0000o
0000o

Figure 4.2: The systolic a,rray of ?a.

The cells of the four mappable matrices axe shown in Figure 4.1. In the four transformation

matrices, we select ?+. Then the rnapping of the index set is given as follows:

f'l f"'lf&l ln+i+ill_l_lor_rll;l=l;_i | @.+)l'l-lrrrrlLyl Llo olLil L k l
where i is the time at which the computation indexed by (k,i,, j) is computed and (c,g)
indicates the processor where that computation is performed.

l: The systolic axray corresponding to this transformation matrix is shown in Figure 4.2

and Figure 4.3 is the structure of the cell. Each cell has simple circuits such ao adder,

multiplier, and delay units.

4.2.2 Systolic Arrays for the Revised Simplex Method

Other steps of algorithm are also designed in similar manner. Figures 4.4, 4.5, 4.6 and

4.7 show the structures of arrays and these cells. These figures are the results of revised

simplex method in the case of m - 3, n :9.
The whole result of this case is Figure 4.8. This array consists of three modules. The

´

4.2 Simple Architecture for Parallel Processing

Figure 4.3: The structure of cell of 7a.

36

4.2 Simple Architecture for Parallel Processing

′fヽ

B~1く

w(3)ow(2)ow(1)

/_三 _(2,3)1翌llb■
理し

'解

キ
''メ

ユ1鶴|1脅,1幕)>
2(■)タツ

Cb(1)O Cb(2)o Cb(3)

―

Figure 4.4: The structure of array and the cell of step 1.

37

B~1

4.2 Simple Architecture for Parallel Processing

―
W(1)

C(1)OC(2)o c(3)o c(4)o c(5)o c(6)o c(7)o c(8)o

o―w(2)o―w(3)

C(9)

Figure 4.5: The structure of array and the cell of step 2.

38

4.2 Simple Architecture for Parallel Processing

＞ヽ
＞

、
３
，
‐

′

Aq(3)o Aq(2)o Aq(1)

d(■)od(2)od(3)

A

Figure 4.6: The structure of array and the cell of step 4.

B~1

39

4.2 Simple Architecture for Parallel Processing

τ′■石0ぁ
I >

Figure 4.7: The structure of array and the cell of step B.

40

4.2 Simple Architecture for Parallel Processing

Zero vector

[Ⅷ 臨強ぃ｀
1(CtIIじ夕が

if a■ ■ R>=O then STOP

い l r
〕>

a=0
if D_i>O then

if (D_1/b_1)>a then
.{ a=D_i/b_i

p=i)
if all D_iく =O then STOP

>

t,p is rePlaced Uv Q

if il=p then
eta=― (Dtti/D_p)

else
eta=(1/Dttp)-1

B‐
ユ
EAl

、
曲
暉
／
獅
回

０

「
―
―
―
＝
１１
コ

目

品

ピ

」

[―W]

W

Erl

「

2→

q

r⌒ ,

c鼻 3→

Figure 4.8: The systolic array for revised simplex method in the case of m - 3, n:9.

41

4.2 Simple Architecture for Parallel Processing

module 0 has circuits for step 1 (Equation (2.6)), step 2 (Equation (2.7)) and step 3

(Equation (2.8)). For step 1, an array that has (2m - 1) cells (cell 0) are used. Elements

of" B-' and c6 are inputed into the array and the vector 10 is put out. u; is converted to

-u), Next, -ln is inputed into the array for step 2, which has (n - 1) cells (cell 1) and

calculates the vector r. Then the index g is obtained if some elements of r are negative,

and the computation is terminated if no element of r is negative (step 3).

The module t has circuits for step 4 (Equation (2.9)), step 5 (Equation (2.10)) and

step 6 (Equatioo (2.11)). A circuit for step 4 has (2* - 1) cells (cell 2). Elements of

B-L and An are inputed into the circuit and the vector d is put out. If no element of

d is positive, then the computation is terminated and this problem is unbounded (step

5). Otherwise an index p is obtained (step 6). To simplify initializing of step 6, we have

designed the process of searching for the maximum of the reciprocal number instead of

the minimum.

The module 2 has circuits for step 7 (Equation (2.L2)) and step 8 (Equation (2.13)).

The modified eta vector is computed (step 7). Circuit for step 8 whose design is shown in

the previous section, has (2m - 1) cells for pivoting B-L and one cell for pivoting 6 (cell

3). And it has a circuit for updating basic cost vector.

After the computation of module 2, the process starts again from module 0 until the

final optimal solution is found.

CeIl 0 and cell 1 in module 0 are the same. Cell 2 in module 1 is obtained by mirror

transformation of cell 0 or cell 1. Cell 3 in module 2 is very similar to cell 0 and cell 1.

Therefore we can design the revised simplex method with only three kinds of cells. Each

cell has simple circuits such as adder, multiplier and delay circuits.

In order to use the same cells without changing the data stream of B-'r w€ can unify

cell 0 (or cell 1) and cell 2 as Figure 4.9. Two 2:1 multiplexers and 1:2 decoder are

included in the unified cell. If the signal Ctrl is '0', then the unified cells operate as cell

0. However, if the signal Ctrl is '1', then they operate as cell 2.

This systolic architecture can reduce the time required for solving problem as Table

4.3. Therefore, this systolic architecture can solve a linear programming problem faster

than sequential computation.

42

4.2 Simple Architecture for Parallel Processing

ctrl

Figure 4.9: The structure of the unified cell.

43

4.2 Simple Architecture for Parallel Processing

Steps Sequential Computation Using Systolic Array

step 1

step 2

step 4

step 8

0(m2)

ο(mη)

0(m2)

0(m2)

0(4鶴 -2),(2鶴 -1)cellS

O(3電 一鶴 -2),(η -1)CellS

O(4鶴 -2),(2鶴 -1)cellS

O(4鶴 -2),(2鶴 -1)cellS

Table 4.3: Comparison of sequential computation with computation using systolic array.

Assume that rs is the operating time required by the cells. Then the total time of

module 0 is (3n { lm)rs. Module 1 is 4mrs and module 2 is 4mrs.

Because module 0 takes the most time, data between modules has to be changed after

computations of module 0 are finished. Because index g of the result of module 0 is used

in module 1, module 0, and module l can't be executed simultaneously. Also module 2

uses index p of the result of module 1. So only one module among three modules can

perform computations at a time.

4.2.3 Systolic Array for Parallelism Improvement

In Section 4.2.2, we proposed the systolic array to solve linear programming (Figure 4.8).

However in the design, only one module among three modules can be performed. Here

we propose a more effi.cient model.

In order to improve parallelism, we start computations from three starting points. In

other words, after the computation of module 0 is finished, w€ can obtain three starting

points which have negative values of. r. Figure 4.10 shows the efficient usage of the array

of Figure 4.8. Each controller stores information (B-', b, cb, p, q) in its local memory.

The switching network connects three modules to three controllers.

The computations of three modules are finished and then the results of computations

are stored in each controller. Then three controllers are connected to next three modules

by the switching network. The switching network has three patterns as Figure 4.tL

shows. If any module among three modules finds the optimal solution, the computations

4.3 Architecture for Large Scale Linear Programming

出
】ｏ
ぉ
ち
Ｚ

“
ロ
コ
８
】卜
∽

B-t brPrQ,

Module l
Controller l

-1rbro9,

Controller 2
-1rbro9,

Main
Memory

(A,d,c)

Figure 4.10: Efficient usage of an array of the revised simplex method.

are finished.

Figure 4.L2 shows the pipeline diagram of the application of the array of the revised

simplex method. Therefore, we can obtain the optimal solution faster than the initial

design.

4.3 Architecture for Large Scale Linear

Programming

We proposed the simple architecture in Section 4.2, but that design can solve only fixed

size linear programming problems. In practice, the sizes of linear programming problems

are very large. Then we propose an architecture which can solve any large size linear

programming problems using separating into several chips.

45

4.3 Aし rchitecture for Large Scale Linear Programn■ ing

pattern 0 pattern 1 patten2

Figure 4.LL: Three patterns of the switching network.

modules

M2

MI"

MO
i\

4 8 time
(pipeline cycles)

C i : computation of i-th starting point
(for i=0, I,2)

Figure 4.I2: Pipeline diagram of application of the array.

46

CO C1 C2 CO C1 C2 OOO

OO'

ooa

CO C1 C2 CO c1, C2 CO

CO C1 C2 CO C1 C2 CO C1

4.3 Architecture for Large Scale Linear Programming

4.3.L Modifted Systolic Array for Large Scale Linear Progrirr-
ming

As the sizes of linear program*iog problems are larger, cells are increased. Therefore, we

separate circuits into three kinds of chips which are called Chip A, Chip B, and Chip C.

Chip A has the unified cells, cell 3, 1:2 decoder, and 2:1 multiplexer. Chip B has a

cell 3, a 1:2 decoder, and several circuits. Chip C has 1:2 decoder and cell 1. And each

chip has local memory.

Figure 4.L3 shows the modified design in the case that Chip A, Chip B, and Chip C

can solve linear programming problem of rn : 3, n - 9. We can convert the function of

Chip A by utilizing control signals such as Ctrll and Ctrl2 as Table 4.4.

Control signals (Ctrlt, Ctrl2) Function of Chip A

00

01

1x

Step 1

Step 4

Step 8

Table 4.4: The relationship of control signals to function of Chip A; '*' is the Don't care

signal.

Signal Select is utilized to select chips. If signal Select is '0', then data passes through

the chip and goes to next chip. If signal Select is '1', then that is the final chip and data

can't go to next chip.

First, in local memory of each chip, we store all of information about a problem such

as A, b, c6, c. In Chip A, Equations (2.6), (2.9), and (2.13) are computed. Equations

(2.8), (2.10) , (2.L1), and (2.L2) are computed in Chip B. In Chip C, Equation (2.7) is

computed.

If the sizes of linear programming problems are large, we can solve problems by ap-

pending more chips of Chip A and Chip C. Figure 4.L4 shows connections of chips in the

case of k Chip As and k Chip Cs. Each bit of Select selects a Chip A and a Chip C.

Assume that Chip A can include s unified cells and s cell 3s and Chip C can include g

47

4.3 Architecture for Large Scale Linear Programming

０
日
目
０

ｍ

』
日
田
０

|)

く

角
日
０

守３
こ

】電
Ｅ
Ｅ
８
一　

∞ξ
菫

曖
ゴ
７
０
　
〓
８
一バ
員
ｏ
ヽ
■
ｇ
∽６

べ
】■
０
　
　
　
　
龍
ご
で
∽
　
　
　
　
】【●
０

絆
”・ｍ
）

筆

Figure 4.L3: The modified architecture which consists of three chips.

｛

「
＝
Ｑ

】
１

０
ヽ
「
―

●
＝
ｏ
　
　
）

ｏ
Ａ

（
＝
１

０
ヽ
「
１

づ
）

〕
「

48

4.3 Architecture for Large Scale Linear Programming

CHIP
Cl _

|¬

UNBOUNDED

Figure 4.L4: The connections of chips.

49

4.3 Architecture for Large Scale Linear Programming

cell 1s by current VLSI technology. The number of chips which are required to solve an

nx x n size linear programming problem is evaluated in Table 4.5.

Name of Chips The Number of Chips

Chip A

Chip B

「2ηz-11

「里場テ11

Table 4.5: The number of chips that a,re required to solve an rn x n size linea.r progra,runing

problem.

4.3.2 Distributing Data of Problems to Chips

Each chip has its local memory which has information about problems such as A, b, cb,

c. Before the computation is started, we have to store the data of problem in each chip.

Assume that the size of problem is rn x rz and each chip can include r cells. Equation

(4.5) shows the relation the data of a problem and the cells of a chip.

,7, ' ,T,rn - LZJ < i - i 1 rr + LtJ (4.5)

The data of a problem are distributed into chips by the following equation.

|)

″=[」

C==(づ 一ノ‐十[:」)額Юα r

∫οr{l二
:二罵|:二 :二 r:1等:

(4.6)

(4.7)

where i and j arc indices of matrix .El-' and A, and r is the number of chips. c means

the number of cells in chips.

Figure 4.L5 shows an example in the case of r : 3. Equation (4.6) distributes the data

of problerns, A and B-1, into c-th cells of r-th chips.

50

4.3 Architecture for Large Scale Linear Programming

｀ヽ
、(1,9) (2,8) (3,7) (4,6) (5,5) (6,4) (7,3) (8,2) (9,1)。 ノ′＼`

kゝず
'12イ

1・
51'14イ

1・
31111ttz夕

/

面苅)|＼亀l:,ilメ
1311β江ぶ・2'1,'/

/う 0ヽ /Q う ヽ /И lヽ 0● :

|｀
t(ll,312,312,213,213,11:リツノ′

|

＼
｀

ド 聰
i夕

:4゛

#ofchip:x

of cells : c

-2

囲囲囲

0,1,2

Figure 4.L5: The example of data distribution in the case of s - 3.

51

国囲囲

0,1,2

囲囲圏

0,1,2

囲圏圏

0,1,2

l)

4.3 Architecture for Large Scale Linear Programming

4.3.3 Simulation of Cell 3 and the Unified Cell

In this section, we simulate cell 3 (Figure 4.8) and the unified cell (Figure 4.9). Two

cells have several units such as adder, multiplier, and delay units.

In mathematics, there are infinitely many positive and negative integers. However, in

a practical hardware system only a fixed number of integers can be represented, based

on the number of bits allocated to the representation. In this thesis, we use 8-bit binary

quantities.

For an n-bit multiplicand and an n-bit multiplier, the resulting product will be2n bits.

Thus, the product of two 8-bit numbers required 16 bits. Since the resulting products are

entered into the B bits input ports of next cells, we simulate cells in which data bus is 8

bits.

We describe the cells in Verilog-HDl to evaluate the features of the architecture in

relation to its implementation. We can obtain behavioral Verilog-HDl descriptions from

the previous sections. A verification of the description correctness was performed by

Verilog-Xl of Cadence company. Tables 4.6 and 4.7 show the specification of behavioral

models of two cells.

Kinds of Ports bits Names of Ports Operations

input 8 IN-1 ”
７

input 8 IN-2 B;'
input 8 IN-3 B-1

input CLK clock signal

output 8 OUT_1 INI
output 8 OUT2 IN2
output 8 .OUT_3 IN_1*IN2+IN_3

Table 4.6: The specification of behavioral models of cell 3.

52

4.3 Architecture for Large Scale Linear Programming

,'l

Kinds of Ports bits Names of Ports Operations

input 8 IN_1_1 Cb

input 8 IN…12 ス
9

input 8 IN2_1 υ

input 8 IN22 d;n

input 8 IN.3 g-t

input CLK clock signal

input CTRL control signal

output 8 OUT_l_1 IN-1-1 (if CTRL-:O)
output 8 OUT2_1 IN-1-1 * IN-3 + IN2-1 (if CTRL--0)
output 8 OUT_12 rN_1_2 (if CTRL--1)
output 8 OUT22 IN-12 * IN-3 + IN-2-2 (if CTRL-:l)

Table 4.7: The specification of behavioral models of the unified cell.

Figures 4.L6 and 4.17 show the timing waves of cell 3 and the unified cell.

The cursor mark shows the current values of computation such that OUT-1-IN-1:6,

OUT-2-IN-2:6, OUT-3-IN-l*INJ+IN-3-6*.6*0-36 in Figure 4.L6. 'x' value of output

signals (black region) in Figure 4.I7 means that the value is unknown.

The next step is the synthesis of two cells. Table 4.8 summarizes the result of the

automatic synthesis process of Design Analyzer of Synopsys company, based on NEL

(NTT Electronic Technology) library in which 0.5 p,m CMOS technology is used. In this

automatic synthesis process, there are two rnodes such as area-minimum mode (Case-l)

and delay-minimum mode (Case-2).

53

4。3 Architecture for Large Scale Linear IProgramn■ing

IN-lt7:01 0 e

IN-2p:01 0 6

IN-3t7:01 0 o

oUT-1t7:01 0 o

oUT-2t7:01 0 6

OUT-3[7:0] 0 go

CLK OT

恥I_1_l17:Ol ◇ 5

ミ_1_217:0] ◇ 4

1N2 1[7:0] ◇ 6

N_,こ 2[7:Ol 。 3

1N317:0] ◇ 2

0町_1_l17:Ol ◇ 5

0Ur_1_217:Ol ◇ x

OUT 2 1[7:0]◇ 16

0m22[7:0]◇ x

CLK ◇ 1

∝ L ◇ 0

Figure 4.16: The timing wave of cell 3.

Figure 4.L7: The timing wave of the unified cell.

54

4.3 Architecture for Large Scale Linear Programming

Case (Factor) Area [lt*'] Delay [ns] Power l*Wl Standttd Cells

Case-l (Area)

Case-2 (Delay)

215130

213000

0。 78

0。 76

136。5686

130。2947

223

208

}コ |

Table 4.8: The result of automatic synthesis for cell 3.

Case (Factor) Area lp*'l Delay [ns] Power l*V Standard Cells

Case-l (Area)

Case-2 (Delay)

386950

382690

0。 78

0.76

260。 5641

251。 1768

428

398

Table 4.9: The result of automatic synthesis for the unified cell.

Tables 4.8 and 4.9 show clearly that the result of Case-2 is better than Case-l at the

points of area and delay.

How many cells will be implemented in a chip? We can roughly compute by Tables

4.8 and 4.9 as follows:

Size of Chip CelI 3 (Case-2) Unified Cell (Case-2)

2。3× 2。 37η7)2 24 13

4.8× 4。87η722 108 60

7.2× 7.27れ 7)2 243 135

Table 4.10: The number of cells that are implemented in a chip.

Assuming that the frequency of operation of the cells is 1 MHz and the size of a

problem is nz-100, n-1000, the computation time of each module is obtained as Table

4.LL.

55

4.3 Architecture for Large Scale Linear Programming

Modules Computation Time [ns]

module 0 3500

module 1 400

module 2 400

Total 1 4300

Table 4.II: The computation time of each module in the case that the frequency of

operation of the cells is 1 MHz.

Table 4.LL shows whole steps (from step 1 to step 8) can be computed in a few

millisecond.

56

Chapter 5

Concluditrg Remarks

5.1 Conclusion

In this thesis, we have proposed an architecture for linear programming. The aim of

linear programming is to derive an optimum use of resources in industry and in orga-

nizations. Linear programming is concerned with problems in which a linear objective

function in terms of decision variables is to be optimized while a set of linear equations,

inequalities, and sign restrictions are imposed on the decision variables as requirements.

As the number of equations is usually very large, it takes a lot of computation time to find

a optimal solution. Therefore, special-purpose hardware is sought for high-speed linear

programming.

As a solution to the special-purpose architecture, we introduce systolic architecture

which have been proposed for VLSI implementation. A large number of systolic archi-

tectures have been developed and formal methods of design of systolic arrays have been

proposed. In this thesis, we used space-time mapping method given by Moldovan and

could obtain optimal systolic architecture by optimal transformation matrix which has

minimum areo, x timez.

In this architecture (Section 4.2.2), only one module among three modules can be

performed and then we proposed a parallel processing architecture in which all three

57

5。2 Further Works

modules are working (Section 4.2.3). Each module has information of a starting point,

then we can obtain the optimal solution faster than the initial architecture.

In practice, the sizes of linear programming problems are very large. Therefore, we

proposed an architecture which can solve linear programming problems of any large size

by separating circuits into three kinds of chips which are called Chip A, Chip B, and Chip

C. Chip A and Chip C are consisted of systolic cells and another circuits are contained in

Chip B. If the sizes of linear programming problems are large, we can solve problems by

appending more chips of Chip A and Chip C.

In addition, we simulated cell 3 and the unified cell using 0.5 p,m CMOS technology.

By the result of simulation, we can compute how many cells in a chip and how long it
takes.

5。2 Further Works

In this thesis, we proposed a parallel processing architecture. In order to use this archi-

tecture to solve linear programming problems, we have to implement this architecture

using VLSI technology.

Another further work in this direction is to find fast and efficient algorithms. For

example, the interior-point method finds an optimal solution faster than simplex method

by finding a better direction for the next move. However, this approach takes more

computational time in finding a moving direction than the simplex method. Therefore, it
is necessary to consider parallel processing of another method.

58

Acknowledgments

I am indebted to a mrmber of individuals who, either tbrough discussions or by providing

I express my appreciation to Prof. Hirotomo Aeo in Tohoku University and I express

my appreciation to Prof, Ken-ichi Abe and Prof. Masayuki Kawa,rnata whose comments

about the prelimina,ry exa,mination have been so helpful.

I also wish to thank Dr. Shin'ichiro Omachi and parallel group members of Aso lab.

in Tohoku University.

In addition, I expreso my appreciation to our students at Aso lab. in Tohoku Univer-

sity.

Finallg I want to express my special thanks to God.

パ ,

59

Bibliography

[1] G.L.Reijns, J.Luo, and F.Bruggernan, "Parallel Processing of Linea,r Progra,nrning
. Problerns," T.S.L, vo1.1.0, no.4, 1991.

[2] J.Luo and G.L.Reijns, "Parallel Solution of the Revised Simplex Method and Interior

Point Methode for Lineac Progranuning," International Symposium, voI.2, pp.723-736,

1991.

[3] J.K.Ho, T.C.Lee, and R.P.Sunda,rraj, "Decomposition of Linea.r Progra.ms Ueing Pa,r-

allel Computation," Mathentatical Progranming 42, pp.391-405, 1988.

[4] G.B.Dantzig and P.Wolfe, "The Decomposition Principle for Linear Progra.ms,n Op-

etations Rcseaich 8, pp.101-111, 1960.

[5] M.J.Foste.r and H.T.Kung, "The Design of Special-Purpose VLSI Chipa," IEEE Com-

put., vol13, no.l, pp.26-40, Jan.1980.
l,

t
[O] B.Schutz and A.Kliadworth, nA VLSI-Chip-Set for a Hardwa,re-Accelerator for the

Simplex-Metho d.,' Proc, of Fifth Annual IEEE Intqnational ASIC Conference and

Exhibit, pp.553-556, 1992.

[7] C.A.Meaf and L.A.Conway, Inttoduction to VLSI Systmts, Addison-Wesley, Reading,

Mass., 1980.

[8] H.T.K"''g, nWhy Systolic Architectures,' IEEE Comput., vol.15, no.l, Jan.1982.

[9] W.-M.Lin and V.K.P.Kuma,r, "A Note on the Linear Translormation Method for Sys-

tolic Array Design," IEEE Conput., vol.39, no.3, Ma,r,1990.

Bibliography

[10] J'-P.Sheu and C.-Y.Chang, "synthesizing Nested Loop Algorithms Using Nonlinea,r

Tra,nsformation Method," IEEE Comput., vol.2, no.3, July 1991.

[11] M.T.O'Keefe, J.A.B.Fortes and B.W.Wah, "On the Relationship Between Two Sys-

tolic Array Design Methodologies," IEEE Comput., vol.41, no.12, Dec.l.9g2.

[12] V.Chvatal, Linea,r Progtamming, W.H.f'reeman and company, pp.425-454.

[13] S.-C.Fang and S.Puthenpura, Linea.r Optinization and Ertelrreions, Prentice-Hall,

1993.

| [14] D.J.Evans and G.M.Megson, "A Systolic Simplex Algorithm,n Intera. J. Computt
Math., vol.38, pp.1-30, 1991.

[15] D.I.Moldovan, "On the Analysis and Synthesis of VLSI Algorithrns," IEEE Traas.

Comput., vol.C-31, pp.1121-1126, Nov.1982.

[16] D.I.Moldovan and J.A.B.Fortes, "Pa,rtitioning and Mapping Afuorithrns into Fixed

Size Systolic Arrays," IEEE Ttans. Comput., vol.C-35,pp.1-12, Jan.1986.

[17] G.J.Li and B.W.Wah, nThe Design of Optimal Systolic Arrays,' IEEE Ttans. Com-

put., voI.C-}4, no.1, pp.66-77, Jan.1985.

[18] K.Hwang and F.A.Briggs , Computet Atchitectwe and PanJleI Prccessing, McGraw-

Hfl,

[19] M.O.Esonu, A.J.AI-Khalili, S.Ha,riri and D.Al-Khalili, "Systolic Arrays:Ifow to

choose them," IEE Proc. E, Comput. e D$tal Ibch., vol.139, no.3, pp.179-188, May

1992.

[20] C.N.Zhang, J.H.Weton and Y.-F.Yaa, "Determining Objective Functions in Systolic

Array Designs,' IEEE Trans. VLSI systerns, vol.2, no.3, pp.357-360, Sep.1994.

[21] M.O.Esonu, A.J.AI-Khalili, S.Hariri and D,Al-Khalili, nFault-Tole.rant Desigp

Methodology for Systolic Array Architectures,n IEE Proc. E, Comput. 8z DiBitaJ Tech.,

vo1.141, no.l, pp.1.7-28, Jan.1994.

61

Work

r "Ha"rdware for Linear Progra,rnming Using Systolic Array (in Japanese)'

Shinhaeng Lee and Hirotomo Aso

IEICE Fall Conference, D-67, 1996.

o "Special-Purpose Ha,rdware for Linea.r Programming using Systolic Arrays (in En-

gl-ish)"

Shinhaeng Lee and Ilirotomo Aso

IEICE computer system technical report, CPSY96-71, Oct.1996.

o ttSpecial Purpose Hardwa.re for La.rge Scale Linear Programming (in Japanese)"

Shinhaeng Lee and Hirotomo Aso

IEICE Spring Conference, D-6-25, L997.

o "Special-Purpose Hardware Architecture for Large Scale Linear Progra,rrming (in

,- English)"

Shinhaeng Lee, Shin'ichiro Omachi and Ilirotomo Aso

IEICE Trans. Information and Systems, vo1.E80-D, no. 9, Sep. 1997.

(to be published)

62

